

PKI Algorithms

Centre for Development of Advanced Computing (C-DAC) Bangalore

Under the Aegis of

Controller of Certifying Authorities (CCA) Government of India

- Public key algorithms
 - Diffie-Hellman Key Exchange
 - RSA
- Hashing
 - SHA

- A class of cryptographic algorithms that requires two keys
 - One of which is secret, and another is public
- They are based on mathematical problems for which no efficient solutions are available
 - Integer Factorization
 - Discrete Logarithm
 - Integer *k* solving the equation $b^{k} = g$
 - Elliptic Curve Relationship

Diffie-Hellman Key Exchange

- ▶ If current time is 9 o'clock , after 4 hours the clock will show...
 - > It is not at 13 o'clock, but it is 10'clock.
 - > When we reach 12, we start over; 12 is called the modulus.

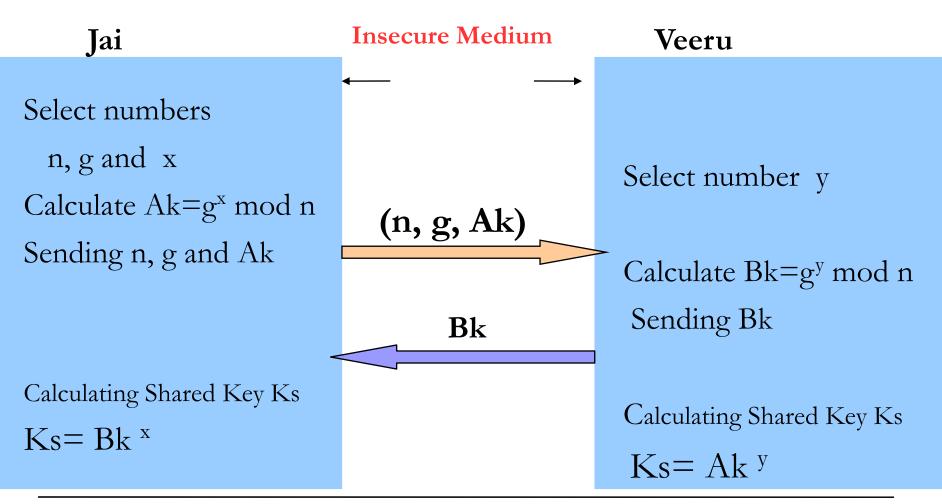
➢ Example

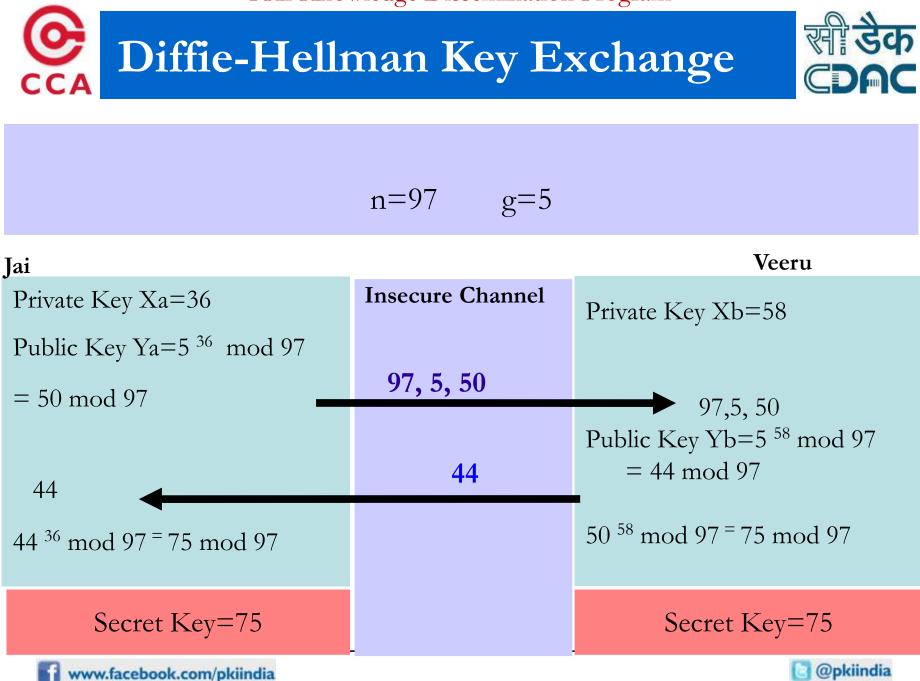
 $> 10 \mod 6 = 4 \mod 9 = 5$

 $> 32 \mod 8 \equiv 0$

- Public key algorithm for key exchange
- Allows two users to exchange a secret key over an insecure medium without any prior secrets.

府 Functionality limited to key exchange only


• The scheme was first published by Whitfield Diffie and Martin Hellman in 1976.



Or Construction Co

Limitations of Diffie- Hellman Algorithm

- ⊗Cannot be used for Encryption/Decryption and Digital Signature
- ⊗Does not provide authentication to the communication parties.
 - © Vulnerable to man-in the middle attack

RSA Algorithm

☞ RSA

- Developed by Ronald Rivest, Adi Shamir and Leonard Adleman

Functionality

- Encryption
- Decryption
- Digital signatures

[®]Based on number theory

Factoring a 232-digit number utilizing hundreds of machines took over 2 years to conclude

- Key Generation Steps
 - Choose two large prime numbers **p** and **q**
 - Compute \mathbf{n} and \mathbf{z} such that $\mathbf{n}=\mathbf{p}^*\mathbf{q}$,

z=(p-1)*(q-1)

- Choose a number d relatively prime to z
- Compute e such that $(e^*d) = 1 \mod z$

Public Key (n,e) Private Key (n,d)

- Encryption
 - 府 Message m, cipher c
 - $_{\text{ff}} C = m^{e} \mod n$
 - 帝 where (n,e)receivers public key
- Decryption
 - $_{\text{fr}} m = c^{d} \mod n$
 - where (n,d) receivers private key

Solution RSA – Key Generation Example

- Select primes p=11, q=3.
- $n = p^*q = 11^*3 = 33$
- z = (p-1)(q-1) = 10*2 = 20
- Choose d=7
- Compute 'e' such that $7*e = 1 \mod 20$ $\Re e=3$
- Public key = (n, e) = (33, 3)
- Private key = (n, d) = (33, 7).

- Encrypt the message m = 7
 c = m^e mod n = 7³ mod 33 = 343 mod 33
 cipher text c = 13
- Decryption

 $m' = c^d \mod n = 13^7 \mod 33 = 7$

• An example of the RSA algorithm.

Plainte	ext (P)		Ciphertext (C)		After dec	ryption
Symbolic	Numeric		P ³ (mod 33)	<u>C</u> ⁷	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	128000000	26	Z
Α	01	1	1	1	01	А
Ν	14	2744	5	78125	14	Ν
Ν	14	2744	5	78125	14	Ν
Е	05	125	26	8031810176	05	Е
		γ		~		
	Sender's	computation	on	Receiver's co	omputation	

ASN.1 STRUCTURE OF RSA PUBLIC AND PRIVATE KEYS IN DER FORMAT

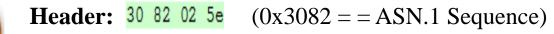
Private Key

	1	BEG:	IN I	RSA	PR:	IVAI	CE F	EY-													
30	82	02	5e	02	01	00	02	81	81	00	с7	8a	46	ac	b5	cf	3e	23	cd	73	0a
0f	ea	59	6f	1d	32	bf	26	aa	£5	d0	de	a6	cf	02	6b	b4	46	3c	68	65	52
38	ee	db	ec	91	89	45	01	73	9£	d2	c3	eb	84	ed	a7	52	ea	28	26	78	27
1 1 d	5d	3a	df	d 8	93	4c	46	06	d 6	£7	24	35	a5	b6	47	a5	39	41	37	50	e5
1a	b9	bb	eb	95	de	93	24	ef	0e	d5	b3	89	£7	ba	b4	3a	8e	7a	ad	da	b4
d7	6c	2d	43	35	af	cf	15	e0	19	6a	d6	df	ed	£7	c1	07	2d	80	18	ed	33
73	5d	bc	22	c 8	58	73	02	03	01	00	01	02	81	81	00	b4	\mathbf{cd}	97	62	71	4e
fa	b8	48	35	bf	dd	51	£4	7d	99	10	5d	61	£5	30	cd	74	a1	e3	1b	07	6a
8e	e5	b7	96	6f	5d	45	19	a3	8e	ef	b9	c6	29	£5	9c	6d	88	1f	a7	93	a0
ae	a9	78	ca	10	6f	2c	05	e7	c4	7£	1b	72	aa	b 0	39	1b	45	86	5c	95	eb
c5	35	cb	84	7e	f1	6c	43	36	1d	1a	7a	fc	47	£2	14	52	ff	55	£9	d3	7d
43	26	6d	49	95	4d	04	fa	£4	ad	8a	4b	4d	d2	d0	b7	79	b1	£9	84	4f	b5
Зb	16	c 8	1d	26	7e	58	e5	8 b	61	7e	c9	02	41	00	e6	e8	a 0	46	02	a 9	f1
27	06	6a	e5	22	8e	£7	4e	2d	92	21	1d	6a	bb	cb	95	b3	fa	73	87	52	eO
fO	fO	fe	£0	39	32	94	df	84	09	02	85	84	7b	be	£5	a7	d3	df	fc	64	c0
fe	4a	£4	05	09	cf	42	£5	94	0£	11	b3	27	02	41	00	dd	39	0b	a9	2b	c0
	ab																				
20	dc	70	d1	85	fe	3c	61	61	68	ae	24	5b	67	29	73	cf	33	45	cb	£8	26
	3e																				
	1f																				
dd	84	4e	bd	de	de	5a	04	6d	35	d0	e1	7a	30	ba	9d	64	$\mathbf{0d}$	42	5e	b9	£9
49	1b	6e	55	56	82	48	b6	44	2£	fd	89	e5	47	02	41	00	c0	77	73	17	b9
c3	67	37	83	4f	b9	2f	cb	£4	73	18	25	60	fb	94	fa	28	b1	a3	91	72	0c
8a	ef	b6	d2	48	d 8	24	fa	ef	56	4a	36	с7	d6	e6	08	00	83	d2	7d	£5	19
	d8																				
	_a3			~~~~														~~~~	~~~~		
	57																				
	8d																				
	1																				

----END RSA PRIVATE KEY-----

Within the RSA, PKCS#1 uses the **Distinguished Encoding Rules (DER)** encoding of ASN.1 to represent keys in a portable format.

The ASN.1 private key structure in DER format has the following components:


RSAPrivateKey :: = SEQUENCE {

version	Version,
modulus	INTEGER, n
publicExponent	INTEGER, e
privateExponent	INTEGER, d
prime1	INTEGER, p
prime2	INTEGER, q
exponent1	INTEGER, d mod (p-1)
exponent2	INTEGER, d mod (q-1)
coefficient	INTEGER, (inverse of q) mod p
otherPrimeInfos	OPTIONAL

Separator: 02 01 (0x02 = Integer and 0x01 = 1 byte long)

Algorithm Version: 00 (0x00 = version zero)

Separator: 02 81 81 (0x02 = Integer and 0x81 = 129 byte long)

Modulus: (129 bytes- starts with a null (0x00), remove this)

8a 46 ac b5 cf 3e 23 cd 73 0a Of ea 59 00 $\mathbf{c7}$ 6f 1d 32 bf 26 <u>aa</u> f5 d0 de a6 <u>cf</u> 02 6b b4 46 65 52 38 ee db ec 91 89 45 01 73 9f 3c 68 d2c3 eb 84 ed a7 52 ea 28 26 27 78 1d5d 3a df 93 4c 46 06 d6 f7 24 35 **a**5 b6 47 a5 39 $\mathbf{d8}$ 41 37 50 e5 1a b9 bb eb 95 de 93 24 ef0e d5 b3 f7 ba b4 3a 8e 7a ad da b4 d7 6c 2d 43 35 89 af cf 15 e0 19 6a d6 df ed £7 c1 07 2d 08 18 \mathbf{ed} 73 5d bc 22 c8 58 33 73

Separator: 02 03 (0x02 = Integer and 0x03 = 3 byte long)

Public Exponent: 01 00 01 (Integer value 65537, Fermat number F4, 3bytes)

Separator: 02 81 81 (0x02 = Integer and 0x81 = 129 byte long)

Private Component: (129 bytes- starts with a null, remove this)

00	$\mathbf{b4}$	<u>cd</u>	97	62	71	4e	£a	b8	48	35	bf	dd	51	£4
7d	99	10	5d	61	£5	30	sd	74	a1	e3	1b	07	6a	8e
e5	$\mathbf{b7}$	96	6f	5d	45	19	aЗ	8e	<u>ef</u>	b 9	c6	29	£5	9c
6d	88	1£	a7	93	$\mathbf{a0}$	ae	a 9	78	ca	10	6£	2c	05	e7
c4	7£	1b	72	aa	bО	39	1b	45	86	5c	95	eb	c5	35
<u>cb</u>	84	7e	£1	6c	43	36	1d	1a	7a	fc	47	£2	14	52
ff	55	£9	d3	7d	43	26	6d	49	95	4d	04	fa	£4	ad
8a	4b	4d	d2	d0	b7	79	b1	£9	84	4f	b5	Зb	16	
1d	26	7e	58	e5	8b	61	7e	c.9						

Separator: 02 41 (0x02 = Integer and 0x41 = 65 byte long)

Prime 1: (65 bytes- starts with a null)

00	e6	e 8	a0	46	02	a 9	f1	27	06	6a	e5	22	8e	£7
4e	2d	92	21	1d	6a	bb	cb	95	b3	fa	73	87	52	e0
fO	<u>£0</u>	fe	£0	39	32	94	df	84	09	02	85	84	7b	be
£5	a7	d3	df	fc	64	c0	fe	4a	£4	05	09	cf	42	£5
94	0£	11	b3	27										

Separator: 02 41 (0x02 = Integer and 0x41 = 65 byte long)

Prime 2: (65 bytes- starts with a null)

00	dd	39	$0\mathbf{b}$	a 9	2b	c0	£7	ab	c 8	52	ab	2a	d 8	ce
18	92	27	88	8a	18	ef	6c	11	9e	83	5c	74	41	2c
dc	70	d1	85	fe	3c	61	61	68	ae	24	5b	67	29	73
cf	33	45	cb	£8	26	cd	3e	97	25	04	df	92	d1	aa
	e1													

Separator: 02 40 (0x02 = Integer and 0x40 = 64 byte long)

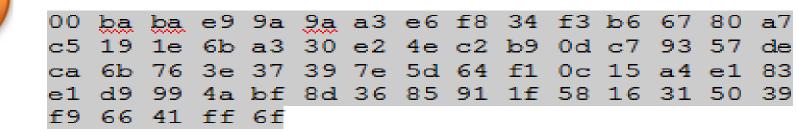
Exponent 1: (64 bytes)

62	09	68	6a	f1	1c	98	1 f	9a	90	ee	02	13	33	1a
c5	2c	62	d4	eb	89	1a	31	d0	3d	48	a 9	ae	dd	84
	bd													
$\mathbf{b0}$	42	5e	b9	£9	49	1b	6e	55	56	82	48	b6	44	2f
£d	89	e5	47											

Separator: 02 41 (0x02 = Integer and 0x41 = 65 byte long)

Exponent 2: (64 bytes)

00	c0	77	73	17	b9	c3	67	37	83	4f	b9	2f	cb	f4
73	18	25	60	fb	94	fa	28	b1	a3	91	72	0c	8a	ef
	d2													
83	d2	7d	£5	19	6e	d 8	\mathbf{be}	$\mathbf{8d}$	cd	5d	52	0e	70	6f
e6	9e	66	58	09										


Separator: 02 41 (0x02 = Integer and 0x41 = 65 byte long)

Coefficient: (65 bytes, always starts with a null)

							′	0						0								,
O CCA	RS H	SA ieat						-		SIO	N		Р	UBI	LIC	EXF	PON	ENT		D	डेक ा	>
		↓	1													/						P
			BEG		RSA	PR	TTY TO T	CE F	KEY-													,
	30	82		5e	02	01	00)2	81	81	00											
	0-		50		1d	32	DI	26	aa	£5	d0	de	a6	cf	02	6b	b4	46	3c	68	65	52
	38	ee	db	ec	91	89	45	01	73	9£	d2	c3	Eb	84	ed	a7	52	ea	28	26	78	27
MODULUS -		5d																				e5
MODULUS -		b9																				
	d7	6c	2d	43	35	af	cf	15	e0	1	oa	-	df	ed	£7	c1	07	2d	80	18	ed	33
	73	5d	bc	22	c 8	58	73	02	03	01	00	01)2	81	81	00	b4	cd	97	62	71	4e
		ь8																				6a
		e5																				a 0
PRIVATE -		a9									~~~~											eb
PKIVAIE -		35																				7d
COMPONEN			6d																			b5
	3b		c 8					~~~~		~~~~												f1
	27		6a																			e0
PRIME 1 -	fO		fe																			c 0
		4a																				
		ab																				41
PRIME 2 -																						26
	cd		97																			
	98		9a																			ae
EXPONENT 1-		84																				£9
	49		6e																			b9
	c 3		37																			0c
EXPONENT 2-		ef																				19
		ã8																				9a
		a3																				
COEFFICIEN		57																				
	bf												66									
			END																			
															SEJ	PER	ATC)R				

Public Key

]	BEGI	EN I	PUBI	JIC	KEY	<u> </u>														
30	81	9f	30	0d	06	09	2a	86	48	86	f7	0d	01	01	01	05	00	03	81	8d	00
30	81	89	02	81	81	00	c 7	8a	46	ac	b5	çf	3e	23	çd	73	0a	0f	ea	59	6f
1d	32	bf	26	aa	f5	d0	de	a6	çf	02	6b	b4	46	3c	68	65	52	38	ee	db	ec
91	89	45	01	73	9f	d2	c3	ĕp	84	€ď	a7	52	ea	28	26	78	27	1d	5d	3a	₫£
d8	93	4c	46	06	d6	f7	24	35	a5	b6	47	a5	39	41	37	50	e5	1a	b9	bb	eb
95	de	93	24	€ť	0e	d5	b3	89	f7	ba	b4	3a	8e	7a	ad	da	b4	d7	6c	2d	43
35	af	¢£	15	e0	19	6a	d6	₫f	ed	f7	c1	07	2d	08	18	ed	33	73	5d	βç	22
c8	58	73	02	03	01	00	01														
]	END	PUE	BLI(C KI	EY		-													

Public Key

The ASN.1 public key structure in DER format has the following components:

ublic Key

Extracted Public Key Components

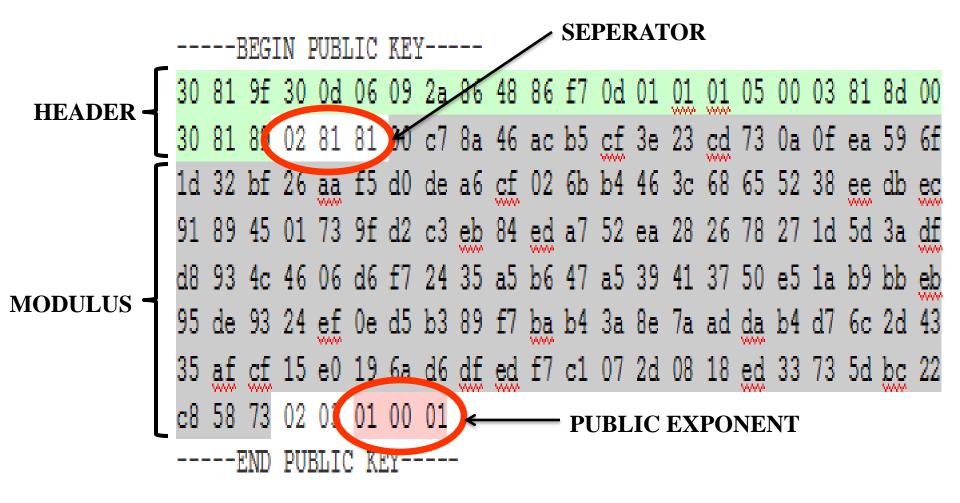
Header:

81 48 0d 01 01 30 9£ 30 06 2a86 86 £7 $\mathbf{O}\mathbf{d}$ 09 01 05 00 03 81 8d 00 30 81 89

Separator: 02 81 81 (0x02 = Integer and 0x81 = 129 byte long)

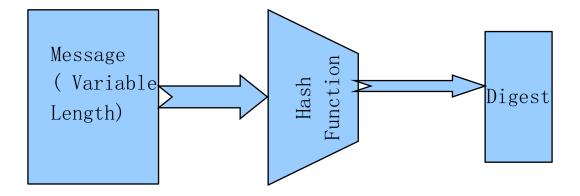
Modulus:

00	$\mathbf{c7}$	8a	46	ac	b5	SE	Зe	23	<u>cd</u>	73	0a	О£	ea	59
					aa									
Зc	68	65	52	38	<u></u>	db	ec	91	89	45	01	73	9£	d2
c3	eb	84	æd	$\mathbf{a7}$	52	ea	28	26	78	27	1d	5d	Зa	df
$\mathbf{d8}$	93	4c	46	06	d6	£7	24	35	a 5	$\mathbf{b6}$	47	a 5	39	41
37	50	e5	1a	b9	bb	eb	95	de	93	24	ef	0e	d5	b3
89	£7	<u>ba</u>	$\mathbf{b4}$	Зa	8e	7a	\mathbf{ad}	da	$\mathbf{b4}$	d7	6c	2d	43	35
a£	st	15	eO	19	6a	d6	d£	ed	£7	c1	07	2d	80	18
ed	33	73	5d	bc	22	c 8	58	73						


Separator: 02 03 (0x02 = Integer and 0x03 = 3 bytes long)

Public Exponent: 01 00 01

Cryptography Hash Algorithm



- A hash function is an algorithm
 - which creates a digital representation or "fingerprint" in the form of a "hash value" or "hash result" of a standard length
 - Hash value is usually much smaller than the message but nevertheless substantially unique to it.
 - Any change to the message invariably produces a different hash result when the same hash function is used
 - It is a one way function Easy to calculate hash value from message but difficult to generate message from hash value

Secure Hash Algorithm (SHA)

- SHA was designed by NIST & NSA in 1993, revised 1995 as SHA-1
- US standard for use with DSA signature scheme
 - standard is FIPS 180-1 1995, also Internet RFC3174
 - the algorithm is SHA, the standard is SHS
- produces 160-bit hash values
- now the generally preferred hash algorithm

- 1. Pad message so its length is 448 mod 512
- 2. Append a 64-bit length value to message
- 3. Initialize 5-word (160-bit) buffer (A,B,C,D,E) to (67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
- 4. Process message in 16-word (512-bit) chunks:
 - expand 16 words into 80 words by mixing & shifting
 - use 4 rounds of 20 bit operations on message block & buffer
 - add output to input to form new buffer value
- 5. Output hash value is the final buffer value

- SHA
 - Brute force attack is harder (160 Vs 128 bits for MD5)
 - Not vulnerable to any known cryptanalytic attacks (compared to MD4/5)
 - A little slower than MD5 (80 Vs 64 steps)
- Both work well on a 32-bit architecture
- Both designed as simple and compact for implementation

- Based on Algebraic structure of elliptic curves over finite fields
- Elliptic Curves can be applied for
 - Digital Signatures
 - Encryption
 - Pseudo-random Generators
- Use of Elliptic curves in cryptography was suggested by Neal Koblitz and Victor Miller in 1985
 - Widely adopted in 2004-2005

- Smaller Key Size
 - Gives equivalent security strength of traditional crypto systems
- Reduced Computational Power

Security Strength (symmetric key)	RSA key size	Equivalent ECC Key Size
112	2048	224
128	3072	256
192	7680	384
256	15360	512

Curves	EC Key Size	Message digest Algorithms
P-224	224	SHA-256
P-256	256	SHA-256
P-384	384	SHA-384
P-521	512	SHA-512

www.facebook.com/pkiindia

0

- Cryptography and Network security principles and practice : William Stallings
- Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C : Bruce Schneier
- www.certicom.com/index.php/ecc-turorial
- http://campustechnology.com/articles/39190_2
- http://csrc.nist.gov/
- http://www-fs.informatik.uni-tuebingen.de/~reinhard/krypto/English/english.html

Thank You pki@cdac.in

