
PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Introduction to  Java Cryptography API

Session 

© 2015, C-DAC



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Objectives
• To understand concepts of Java Cryptography  API  

and other  APIs in Java

We Should Have Know The Keyword

• Plaintext. The message which has to be sent across

• Cipher. The encryption/decryption algorithms which are used

in the transformation of plaintext to ciphertext and vice-versa

• Ciphertext. The message after it is encoded

• Key. This is a unique value (bit pattern, alphabetical sequence) 

that is used by the cipher for encryption/decryption

23.2© 2015, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Encryption

-------
-------
-------
-------
-------
-------

Encryption

++++++
++++++
++++++
++++++
++++++
++++++

-------
-------
-------
-------
-------
-------

Decryption

Plaintext PlaintextCiphertext
“The quick 

brown fox 

jumps over 

the lazy dog”

“The quick 

brown fox 

jumps over 

the lazy dog”

“AxCv;5bmEseTfid3)fG

smWe#4^,sdgfMwir3:d

kJeTsY8R\s@!q3%”



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

-------
-------
-------
-------
-------
-------

Encryption

++++++
++++++
++++++
++++++
++++++
++++++

-------
-------
-------
-------
-------
-------

Decryption

Recipient’s

Public Key

Recipient’s

Private Key

Plaintext PlaintextCiphertext
“The quick 

brown fox 

jumps over 

the lazy dog”

“Py75c%bn&*)9|fDe^

bDFaq#xzjFr@g5=&n

mdFg$5knvMd’rkvegM

s”

“The quick 

brown fox 

jumps over 

the lazy dog”

Public Key Cryptography



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Java Cryptography Architecture

23.5© 2015 C-DAC Core Java Library

Introduction:  The JCA is a major piece of the platform, 

and contains a "provider" architecture a set

of APIs for digital signatures, digests (hashs),certificates

and certificte validation,encryption(symmetric/asymmetric)

Key generation and management ,and secure random

number generation ,to name a few                               

These APIs allow developers to easily integrate security 

into their application code                                                          



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.6© 2013,C-DAC Core Java Library

The architecture was designed around the 

following principles:                                        

Implementation independence: Applications do not need to      

implement security algo. They request security services from the 

Provider. Which are plugged into java plateform via a standard 

Interface , it may be application dependent on multiple providers  

Implementation interoperability: provider are interoperable

Across application, mean an application is not bound to a specific 

Provider , and a provider is not bound to a specific application 

Algorithm extensibility : Java plateform includes a no. of built-in 

Providers that implement a basic set of security services .the java 

Plateform supports the installation of custum providers.algorithm                



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.7© 2015  C-DAC Core Java Library

JCA  Architecture



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.8© 2015, C-DAC Core Java Library

md = MessageDigest.getInstance("MD5");                     

md = MessageDigest.getInstance("MD5", "ProviderC");

java.security.Provider is the base class for all security

providers Each CSP contains an instance of this class

which contains the provider's name and lists all of the 

security services/algorithms it implements                   

Each JDK installation has one or more providers 

installed and configured by default.                              

Additional providers may be added statically

or dynamically Clients may configure their runtime 

environment to specify the provider preference order.



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.9© 2015, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Java.Security

Important API under java security

• Java.Security, Java.Security.acl, 

Java.Security.cer, 

Java.Security.interfaces, 

Java.Security.spec

• Javax.crypto, Javax.crypto.interfaces, 

Javax.crypto.spec



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.11© 2015, C-DAC Core Java Library

Cryptographic Service Provider refers to a package or set          

of packages that supply a concrete implementation of   a   

subset of the JDK Security API cryptography features.The 

Provider class is the interface to such a package or set of  

packages It has methods for accessing the Provider name 

, version number, and other information      

static EngineClassName getInstance(String algorithm)                             

throws NoSuchAlgorithmException          

static EngineClassName getInstance(String algorithm, String provider)    

throws NoSuchAlgorithmException, NoSuchProviderException    

static EngineClassName getInstance(String algorithm, Provider provider)

throws NoSuchAlgorithmException                           



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.12© 2013, C-DAC Core Java Library

MessageDigest md = MessageDigest.getInstance("MD5");          

KeyAgreement ka = KeyAgreement.getInstance("DH", "SunJCE"); 



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.13© 2013, C-DAC Core Java Library

In order to be used, a cryptographic provider must first be installed

then registered either statically or dynamically. There are a variety       

of Sun providers shipped with this release (SUN, SunJCE, SunJSSE,

SunRsaSign, etc.) that are already installed and registered. 

Installing the Provider Classes: Two possible ways

On the normal Java classpath: Place a zip or JAR file 

containing the classes anywhere in your classpath. 

Some algorithms types (Ciphers) require the provider be a

signed Jar file.

As an Installed/Bundled Extension The provider will be 

considered an installed extension if it is placed in the standard 

extension directory. In Sun's JDK, that would be located in:

<java-home>/lib/ext [Unix] <java-home>\lib\ext [Windows] 



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

23.14© 2013, C-DAC Core Java Library

Registering the Provider

The next step is to add the provider to your list of registered

providers. Providers can be registered statically by editing a 

security properties configuration file before running a Java 

application, or dynamically by calling a method at runtime. 

To prevent the installation of rogue providers being added to the

runtime environment, applications attempting to dynamically 

register a provider must possess the appropriate runtime privilege.

Static Registration

configuration file is located in the following location:

<java-home>/lib/security/java.security [Unix] 

<java-home>\lib\security\java.security [Windows] 

For each registered provider, this file should have a statement of 

the following form: security.provider.n=masterClassName

masterClassName must specify the fully qualified name 

of provider's master class.



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

How to Generate a Key (Symmetric)
import javax.crypto.*;

Import java.math.*;

class KeyGen {

public static void main(string []args) throws Exception {

KeyGenerator kg = KeyGenerator.getInstance(“DES”);

SecretKey key = kg.generateKey();

BigInteger b = new BigInteger(1, key.getEncoded());

System.out.println(b.toString(16));

}

}

//Outputs will vary each time; as a new key will be 

generated; 

//AES is another symmetric key algorithm



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Encryption (Symmetric Key)

• Cipher Objects and methods

Cipher.getInstance(“DES/ECB/PKCS5Padding”);

Cipher.init(Cipher.ENCRYPT_MODE,secretkey);

Cipher.doFinal(plaintext);



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Decryption (Symmetric Key)

• Cipher Objects

– Cipher.init(Cipher.DECRYPT_MODE,secretkey);

– Cipher.doFinal(ciphertext);



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example – Symmetric Key
import java.io.*;

import java.security.*;

import javax.crypto.*;

public class Example {

public static void main(String args[]) throws IOException{

try {

byte[] plainText = args[0].getBytes("UTF8");

// Create Key

KeyGenerator kg = KeyGenerator.getInstance("DES");

SecretKey secretKey = kg.generateKey();

System.out.println("Key:"+ new BigInteger(1, 
secretKey.getEncoded()).toString(16));

// Create Cipher

Cipher desCipher =Cipher.getInstance("DES/ECB/PKCS5Padding");

desCipher.init(Cipher.ENCRYPT_MODE, secretKey);



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example.
// Encrypt the plaintext using the secret key

System.out.println("Start Encryption");

byte[] cipherText = desCipher.doFinal(plainText);

System.out.println( "Finish encryption:" );

System.out.println( new String(cipherText, "UTF8") );

// Initializes the Cipher object.

desCipher.init(Cipher.DECRYPT_MODE, secretKey);

// Decrypt the ciphertext using the same secret key

System.out.println("Start Decryption") ;

byte[] NewPlainText = desCipher.doFinal(cipherText);

System.out.println( "Finish decryption: " );

System.out.println( new String(NewPlainText, "UTF8") );

}

catch(Exception e){ System.out.println("Error");}

}}



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example – 2
import javax.crypto.Cipher;

import javax.crypto.BadPaddingException;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.KeyGenerator;

import java.security.Key;

import java.security.InvalidKeyException;

import java.util.Arrays;

import java.math.*;

public class SymmetricCiphers {

private static String algorithm = "DESede"; //AES 

private static Key key = null;

private static Cipher cipher = null;     

23.20© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example – 2  – Continued …
private static void setUp() throws Exception {

key = KeyGenerator.getInstance(algorithm).generateKey();

cipher = Cipher.getInstance(algorithm);

}

public static void main(String[] args) throws Exception {

setUp();

byte[] encryptionBytes = null;

String input = "Hello.";

System.out.println("Input Text: " + input);

System.out.println("Key: "+ new BigInteger(1, 

key.getEncoded()).toString(16));

encryptionBytes = encrypt(input);

System.out.println("Encrypted Text:" + new BigInteger(1, 

encryptionBytes).toString(16)); 

System.out.println("Decrypted Text:" + 

decrypt(encryptionBytes));

} 23.21© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example – 2  – Continued …
private static byte[] encrypt(String input)throws 

InvalidKeyException, BadPaddingException, 

IllegalBlockSizeException {

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] inputBytes = input.getBytes();

return cipher.doFinal(inputBytes);

}

private static String decrypt(byte[] encryptionBytes) 

throws InvalidKeyException, BadPaddingException, 

IllegalBlockSizeException {

cipher.init(Cipher.DECRYPT_MODE, key);

byte[] recoveredBytes = cipher.doFinal(encryptionBytes);

String recovered = new String(recoveredBytes);

return recovered;

}

23.22© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Symmetric Key Cryptography

• Symmetric approach uses one key for encryption & 

decryption.

• Example you just saw was Symmetric. Same key was 

used in encryption & decryption.

• Key transfer is problem over here.



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Asymmetric Key Cryptography

• Asymmetric System uses two different keys.

– Public key

– Private key

• One for encryption & other for decryption.

• We require to do the following things.

– Generate Public key

– Generate Private key

– Encrypt message with Public key

– Decrypt message with Private key



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Generating Public & Private Keys

• KeyPairGenerator.getInstance(“RSA”)

• KeyPairGenerator.initialize(1024)

• KeyPairGenerator.generateKeyPair()

• KeyPair

– KeyPair.getPublic()

– KeyPair.getPrivate()



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Example - Asymmetric Key Gen
import java.io.*;

import java.security.*;

import javax.crypto.*;

class example2 {

public static void main (String args[]) {

try{

// Generate an RSA key

System.out.println( "\nStart generating RSA key" );

KeyPairGenerator keyGen = 
KeyPairGenerator.getInstance("RSA");

keyGen.initialize(1024);

KeyPair key = keyGen.generateKeyPair();

System.out.println( "Finish generating RSA key" );

System.out.println( "Private Key :" + key.getPrivate());

System.out.println("Public Key :" +   key.getPublic());

}

catch(Exception e){System.out.println("ERROR");}

}}



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Encryption & Decryption Example.
public static byte[] encrypt(String text, KeyPair 

key) 

{

byte[] cipherText = null; 

try {

final Cipher cipher = Cipher.getInstance(“RSA”);

cipher.init(Cipher.ENCRYPT_MODE, key.getPublic());

cipherText = cipher.doFinal(text.getBytes()); 

} 

catch (Exception e) { e.printStackTrace(); } 
return cipherText; 

}



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Message Digest
• Java.security.MessageDigest

• MessageDigest.getInstance(“MD5”);

• MessageDigest.update(plain text);

• MessageDigest.digest()



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Message Digest Example

import java.security.*;

import java.math.*;

public class Message {

public static void main (String[] args)throws Exception {

MessageDigest md = MessageDigest.getInstance("MD5");

String text = “password123”;

byte[] plainText = text.getBytes("UTF8");

md.update(plainText); //updates input to Digest

byte[] mdbytes = md.digest(); //completes hash operation

BigInteger b = new BigInteger(1, mdbytes);

System.out.println(“Message Digest=“ + b.toString(16));

}

}

Output:

Message Digest = 482c811da5d5b4bc6d497ffa98491e38

//SHA-1, SHA-256, SHA-384, SHA-512 are other algorithms supported



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Signature
• Java.security.Signature

• Generating Signature:

– Signature.getInstance(“SHA1withDSA”,”SUN”);

– Signature.initSign(private key);

– Signature.update(Message, length);

– Signature.sign();

• Verify Digital Signature:

– Signature.getInstance(“SHA1withDSA”,”SUN”);

– Signature.initVerify(public Key);

– Signature.update(Message, length);

– Signature.verify(Signature);



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Signature - Example
import java.io.*;

import java.security.*;

import javax.crypto.*;

public class DigitalSigning {

KeyPair key;    

Signature signer; 

String data = "Hello!! Don't share this secret!";    

byte[] dataToSign;

void generateKeys()    {        

try {

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

keyGen.initialize(1024);

key = keyGen.generateKeyPair();

} catch (Exception e) {}  

} 
23.31© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Signature – Example 
byte[] Sign() { 

byte[] signeddata = null;

try {        

signer = Signature.getInstance("SHA1withRSA");        

signer.initSign(key.getPrivate());       

dataToSign = data.getBytes();        

signer.update(dataToSign);

signeddata = signer.sign();

}  catch (Exception e) {}        

return signeddata;

}

public static void main(String []args) {                 

DigitalSigning ds = new DigitalSigning(); 

ds.generateKeys();        

byte[] signeddata = ds.Sign(); 

23.32© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Signature – Example 
System.out.println("Data to be signed = "+ds.data);        

BigInteger b = new BigInteger (1, 

ds.key.getPrivate().getEncoded()); 

System.out.println("PrivateKeyUsed=" + b.toString(16));

b = new BigInteger(1, signeddata);

System.out.println("Signed Data = " + b.toString(16));

}}

23.33© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Signature – Output 
Data to be signed = Hello!! Don't share this secret!

Private Key Used = 

30820276020100300d06092a864886f70d0101010500048202603082025c02010002818100e32e

ba520ad8ccd3ed35c5fdaf992d36243ff9673002ccff040ddb0a81c0c7c7e2572e92fd96c63a6b

33e234ba24672b90ad74991d38565f0ca3601f1fbf2497ef979f0797d70e4aa0400c6903672514

3b2309afe6c9a5e23235542f103fb367c0f3fe5574d79d0cecd84e754495c39ff19eca5442fa7f

601319c31f3041045b02030100010281802ba57b986d8b0f771bd8bbec2c436283475d9f1deb04

6ebc03dc619bd827e07a0f8b2e608125e979a9c4f30dac41782ccf83f3a5c30e62d1aa0ced57ad

72bca5b365d805fc0a1d503e794a6c38f0676267914a9ec9c4b15aecc7552eb69469a6c5d007ce

7d668d0f6150c77e5de808e065e1137d66b449510814dc806a60ba69024100f8a84796dbef924f

063c026ae244eb055aa960a090f5ff3950478aad319d481ddbdb59823a27107f746c3fd36db9a8

584bf16f62909a015160f6bd078205b1ef024100e9e41c1844acebc7f67455ada0b443cd102e24

c210d9d4554652acdbcd885e7efe1bcd94856ddf000dc711267f528b768471f00c9790bd6293d8

264af0a21055024100ac3b532ae9382dad52f229f282bb9dd65d8fc8802f28551a0bc3220908be

9a7f2413f111c4d9de118a40988d08097ad37df6c362102abc12f408b3b2099b8c3d02401572df

c8b1f391a3c2cc245749d77e283e059d4556ba432896cc5a21c6156d6503f494c3bc00b9648dde

e589bc3f5b9ec0c29a1aed834e7acdc812aae8aa540902403300d52e5f406e71254b2e3b7f3b91

4e014f5e3d6472a02874ea35ef4fb2648e82c51b42401036b14e45b3d6f9d17831c30ec1257b84

8e45351540b428e56797

Signed Data = 

83dbec624cdacfc24f15771797cbb2a8e37520d70a44eee5f6e2bcf8113b01948c50ee1ceb4f17

42060e9cc999325653904d405a9ac54e6b68e40eba9f47afbd6ccc1ab21ed4517ccf8dcc1346f2

c8a8614a935f5c2b8fed9fd1cf4256ac3b099e3a15ebfb4263c1ab808e491bbc31bc3957311a14

8190506be6ba2a7d93daf0

23.34© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Certificate
• Java.seurity.cert

– Java.security.cert.Certificate

– Java.security.cert.X509Certificate

– Java.security.cert.CertificateFactory

– Java.security.cert.CertStore

• Types of Certificate:

– der

– pem



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Digital Certificate (cont.)

• CertificateFactory.getInstance(“X509”);

• CertificateFactory.generateCertificate(C

ert.der)

• X509Certificate.getPublicKey()

• X509Certificate.getIssuerDN()

• X509Certificate.verify(public key)

• X509Certificate.getSignature()

• X509Certificate.getSigAlgoName()



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Certificate Revocation List (CRL)
• Java.security.cert

– X509CRL

– X509CRLEntry

– X509CRLSelectors

– X509

– CertificateFactory

• Implementing CRL

– CertificateFactory.getInstance(“X509CRL”);

– CertificateFactory.generteCRl(crlFile)



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

CRL (Cont.)
• Checking for Revoked Certificates

– X509.getRevokedCertificates()

– X509.getRevokedCertificate(Serial Number)

– X509.getRevokedCertificate(Certificate)

• Other Methods
– X509CRL.getNextUpdate()

– X509CRL.getThisUpdate()

– X509CRLEntry.getRevokationDate()



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL
• SSL (Secure Sockets Layer)

– Originally developed by Netscape

– Provides Transport Layer Security (HTTPS is HTTP 
over SSL)

– Version 1.0 never released; 2.0 released in 1995 –

with lot of flaws; 3.0 released in 1996; 

– Basic Algorithm written by Dr. Taher Elgamal –

father of SSL

– Uses X.509 certificates to authenticate the 

counterparty and exchange a symmetric key

• Due to X.509, you need CA and PKI in place to generate, 

sign, and administer the validity of the certificates

23.39© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

How SSL Works?

23.40© 2013, C-DAC Core Java Library

Bob – The User @ Client / Browser

Alice – The Merchant @ Server

Courtesy: James F Kurose, Keith W Ross, Computer Networking: A Top-Down approach featuring the Internet



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

41

SSL

• Provides a secure channel between communicating 

devices on the net

• SSL is a protocol in the network protocol stack. It 

resides between the application and the TCP/IP 

protocols (illustrated in the next slide)

• SSL uses both RSA and Diffie-Hellman Algorithms

• In theory SSL can be used by any application level 

protocol but at the moment it is used for securing 

HTTP transactions



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

42

SSL (Secure Sockets Layer)

What is provided by SSL

• Confidentiality (privacy)

• Data Integrity (Tamper Proofing)

• Server Authentication (Proving a server is what it 
claims it is)

• Used in typical B2C transaction

• Optional Client Authentication would be required 
in B2B (or web services environment in which 
program talks to program)



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL
• SSL Certificates are typically issued to 

Fully-qualified domain names (Eg: 

webmail.cdac.in, mail.google.com)

– However Wildcard SSL Certificates can 

also be obtained (Eg: *.google.com)

23.43© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL
• SSL Server Authentication

– SSL-enabled client can use PKC to check that the 
server’s certificate and public ID are valid, and that 
the CA is trusted

• SSL Client Authentication
– SSL-enabled server can check that a client’s 

certificate and public ID are valid, and that the CA 
is trusted

• Secure connection – client/server 
transmissions are encrypted, plus tamper 
detection



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL
• SSL exchanges messages that permit:

– client to authenticate the server (always)

– server to authenticate the client (optional)

– client and server negotiation of crypto algorithms that they both 

support 

– using PKC to encrypt and exchange shared secrets

– establishing an encrypted SSL connection 



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL Protocol Stack

23.46© 2013, C-DAC Core Java Library

SSL 
Handshake 

Protocol

SSL Change 
Cipher Spec  

Protocol

SSL Alert 
protocol

HTTP

SSL Record protocol

TCP

IP

• SSL is actually a suite of protocols of which the record and the 
handshake protocols are the key ones.

• The handshake protocol is used to set up the session.

• The record protocol is used to receive/transmit the data passed 

to it from the other sub-protocols (including the handshake 

protocol



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL Handshake Protocol

23.47© 2013, C-DAC Core Java Library

initiate

server 
talks

client 
talks

finish

client_hello

server_hello

certificate

server_key_exchange

certificate_request

server_request_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

SSL Handshake

Shaded regions show 
optional messages



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

TLS
• TLS is an IETF Standards track protocol

– First defined in 1999 (RFC 2246) as an 

upgrade to SSL 3.0

– Updated in 2008 (RFC 5246) and 2011 

(RFC 6176)

– Based on the SSL Specifications 

developed by Netscape Communications; 

and uses the same X.509 certificates

• X.509 Certificates

– Standard by ITU-T 

– Formats for Public Key Certificates
23.48© 2013, C-DAC Core Java Library



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

49

SSL and Security Keys

-Uses public/private key (asymmetric)
-Scheme to create secret key (symmetric)

-Secret key is then used for encryption of data
-SSL operation is optimized for performance:

-Using symmetric key for encryption is a lot faster than 
using asymmetric keys



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

50

SSL Key Exchange



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

SSL Authentication

1. For server authentication, the client encrypts the premaster secret with 

the server's public key.

2. Only the server’s private key could have decrypted that data.

3. For client authentication, client encrypts some data known to client 

and server with  client’s private key (i.e., creates a digital signature). 

Public key in client’s certificate will validate the  digital signature only if it 

was encrypted with the  client’s private key.



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Server Authentication

Server’s Certificate

Server’s public key

Certificate’s validity

Server’s domain name

Issuer’s domain name

Issuer’s digital signature

1. Is today’s date within validity 

period?

2. Is issuing CA a trusted CA?

3. Does issuing CA’s public key 

validate the issuer’s digital 

signature?

4. Does the domain name in the 

server’s certificate match the 

domain name of the server itself?



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Programming - Server

23.53© 2013, C-DAC Core Java Library

import javax.net.ssl.SSLServerSocket; 

import javax.net.ssl.SSLServerSocketFactory; 

import javax.net.ssl.SSLSocket;

SSLServerSocketFactory sssf = 

(SSLServerSocketFactory) 

SSLServerSocketFactory.getDefault(); 

SSLServerSocket sss = (SSLServerSocket) 

sssf.createServerSocket(9999); 

SSLSocket ss = (SSLSocket) sss.accept();

InputStream inputstream = sslsocket.getInputStream();

..



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Programming - Client

23.54© 2013, C-DAC Core Java Library

import javax.net.ssl.SSLSocket;

import javax.net.ssl.SSLSocketFactory;

SSLSocketFactory ssf = (SSLSocketFactory) ssf.getDefault(); 

SSLSocket ss = (SSLSocket) ssf.createSocket("localhost", 

9999);

OutputStream outputstream = sslsocket.getOutputStream();

..



PGDITISS – Java and Network Programming Centre for Development of Advanced Computing

Summary
• Java Cryptography APIs

• SSL 

23.55© 2013, C-DAC Core Java Library


