

4th INTERNATIONAL CONFERENCE ON PUBLIC KEY INFRASTRUCTURE AND ITS APPLICATIONS (PKIA 2023)

SEPTEMBER 8th and 9th 2

Cryptographic Challenges and Security in Post Quantum Cryptography

Migration: A Prospective Approach

Anoop Kumar Pandey, Aashish Banati, Balaji R, S D Sudarsan, K K Soundra Pandian

2023

Post Quantum Cryptography

- Threat to Classical Cryptography
 - Shor's Algorithm
 - Factorization problem difficulty From Exponential to Polynomial using Quantum Computing
 - Largest integer factored 21 in 2012 (Relief for now!!!)
 - Threat to Asymmetric Cryptography (RSA etc.)
 - Grover's Algorithm

CDAC

- Searching in $O(\sqrt{N})$
- Exhaustive Search in Symmetric Key: time complexity from 2^N to $2^{N/2}$
- Finding Collision: time complexity from $2^{N/2}$ to $2^{N/3}$
- Threat to Symmetric Cryptography (AES etc.)

Algorithm	Status in Post Quantum World
AES-256	Secure
SHA-256, SHA-3	Secure
RSA	Not Secure
ECDSA, ECDH	Not Secure
DSA	Not Secure

Post Quantum Cryptography

- Field of research on developing cryptographic Algorithms that can resist attacks from Quantum Computers.
- Approaches
 - Lattice Based Cryptography
 - Based on Computational problems associated with lattices (geometric Structure in N-dimensional spaces)
 - Shortest Vector Problem, Learning with Errors, Ring Learning with Errors
 - E.g. Crystals-Dilithium
 - Code Based Cryptography
 - Relies on decoding problems related to error-correcting codes
 - E.g. McEliece
 - *Multivariate Cryptography*
 - Hash Based Cryptography

Post Quantum Cryptography

- Approaches
 - *Multivariate Cryptography*
 - Based on the hardness of solving systems of multivariate polynomial equations over finite fields. (NP-Hard)
 - E.g. Rainbow
 - Hash Based Cryptography
 - *Relies on properties of cryptographic Hash Functions*
 - Collision Resistance and One-Wayness
 - E.g. Merkle Signature Scheme, Sphincs+

NIST PQC Competition

- Launched in 2016 to standardize Quantum-resistant set of cryptographic algorithms
- Current Winners (Round 3)
 - General Encryption
 - Crystals-Kyber
 - Digital Signature
 - Crystals-Dilithium (Primary Algorithm)
 - Fast Fourier Lattice-Based Compact Signatures over NRTU (Falcon) (Smaller Signatures)
 - Sphincs+ (Larger but Slower)
- Four KEM moved to Round 4
 - Classic McEliece
 - Bit Flipping Key Encapsulation (BIKE)
 - Hamming Quasi Cycle (HQC)
 - Supersingular Isogeny Key Encapsulation (SIKE)

Limitations of PQC

- Performance Overhead
- Large Key Sizes
- Standardization still in process
- Implementation Complexity
- Quantum Computing Progress
- Cryptanalysis
- Transition Complexity
- Limited Deployment Experience

International Efforts in PQC Standardization

- ETSI (European Telecommunication Standards Institute)
 - Supports NIST PQC (Report in October 2021)
- ISO (International Organization for Standardization)
 - ISO/IEC JTC 1/SC 27/WG 2 and ISO/TC 68/SC 2/WG 11 working to finalize Post Quantum Cryptography
 - Nothing published yet in public domain
- IETF (Internet Engineering Task Force)
 - Discussions to establish a working group for transition support to PQC
 - Proposals for Specifying algo identifiers and ASN.1 encoding for Kyber.
 - Usage of Dilithium in X.509 Certificates and CRLs also in discussion
- Japan

CDAC

- CRYPTREC set up to evaluate and recommend crypto techniques for Govt and Industrial Usage
- NIST Competition has many Japanese contributors: Classic McEliece (R3 finalist), Ding Key Exchange etc.
- PQC CARD: PQC enabled Smart Card uses Crystals-Dilithium
 - Used to access H-LINCOS (Health Data)

International Efforts in PQC Standardization

- United Kingdom
 - National Cyber Security Centre (NCSC) nodal agency of UK
 - Supports NIST Standards
 - Advises to wait for Standards and Protocols
 - Advises not to implement own non-standard PQC (security not verifiable)
- China
 - The Chinese Association for Cryptologic Research (CACR) started PQC Standardization in 2018
 - Shortlisted Aigi-Sig (for Signature), LAC.PKE, Aigis-enc (for KEM) in 2020
 - Based on Lattice Schemes
- Korea
 - PQC Standardization through National Contest for Quantum Resistant Cryptography in Nov 2021
 - First round in progress (Nov '22 Nov '23)

International Efforts in PQC Standardization

- Other Notable Efforts
 - Microsoft
 - Working on software libraries for PQC
 - Also working on four potential cryptographic solutions
 - Support Open Quantum Safe Project (a software prototyping platform)
 - Also working on Post Quantum Crypto VPN (a fork of OpenVPN)
 - Google
 - IN 2016, Deployed "New Hope", a post-quantum-key-exchange scheme for communication between Chrome Browser and Google Servers
 - Infineon
 - In 2017, Implemented a variant of "New Hope" on contactless smartcard microcontroller commercially available chipset for PQC for embedded systems
 - IBM
 - Focused on Lattice-based solutions

Crystals-Dilithium Signature Demo

https://learn.pkiindia.in/pqc-sign.html

Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India

सी डैक Срас

ानादेव त केवल्य

THANK YOU

