Controller of Certifying Authorities Ministry of Electronics & Information Technology **Government of India**

4TH INTERNATIONAL CONFERENCE ON PUBLIC KEY INFRASTRUCTURE AND ITS APPLICATIONS (PKIA 2023)

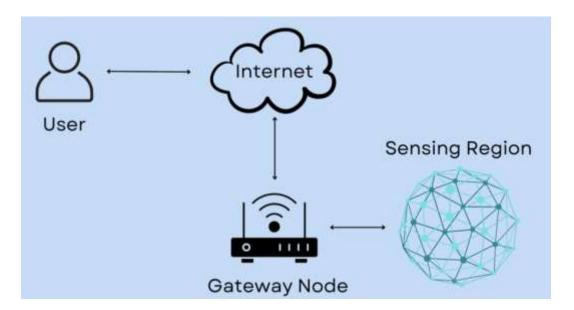
SEPTEMBER 8-9TH, 2023

Lightweight Certificateless Digital Signature Scheme for WSNs

Rhithick Murali, NIT Trichy

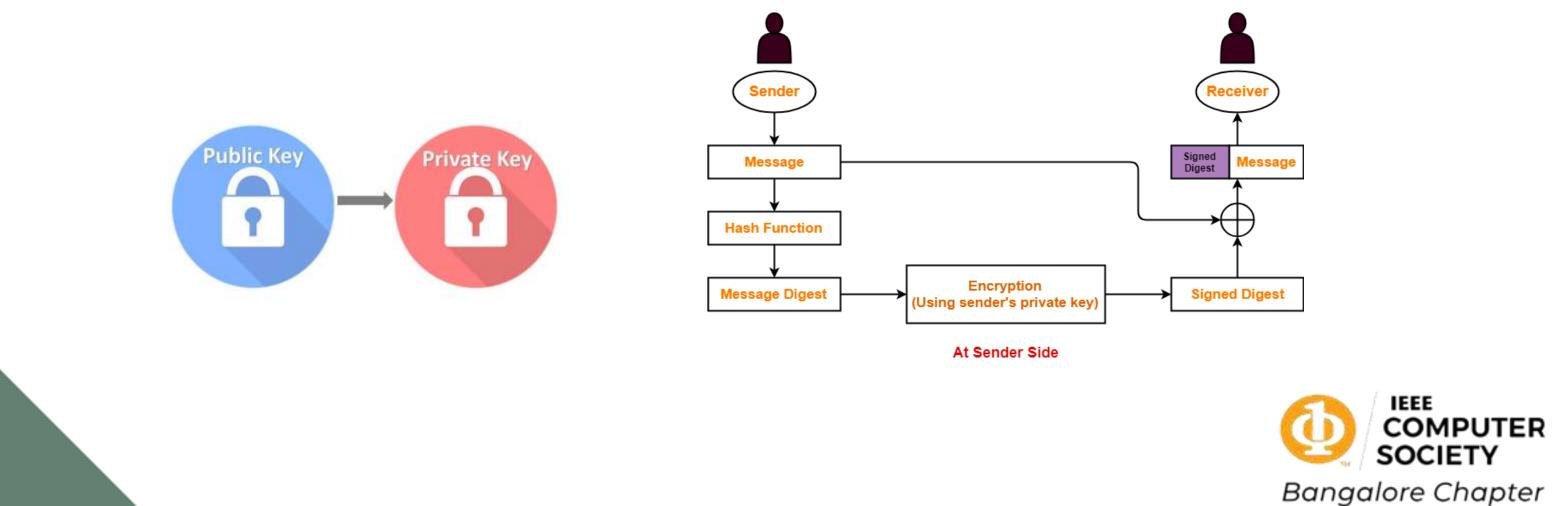
Vivek Arunachalam, NIT Trichy

🖤 www.pkiindia.in 📻


CDAC, BENGALURU

Introduction

- Several types of smart devices have emerged in this era.
- Ensuring safety and security of each node and to protect the data is important.
- In a public network how to ensure the security?

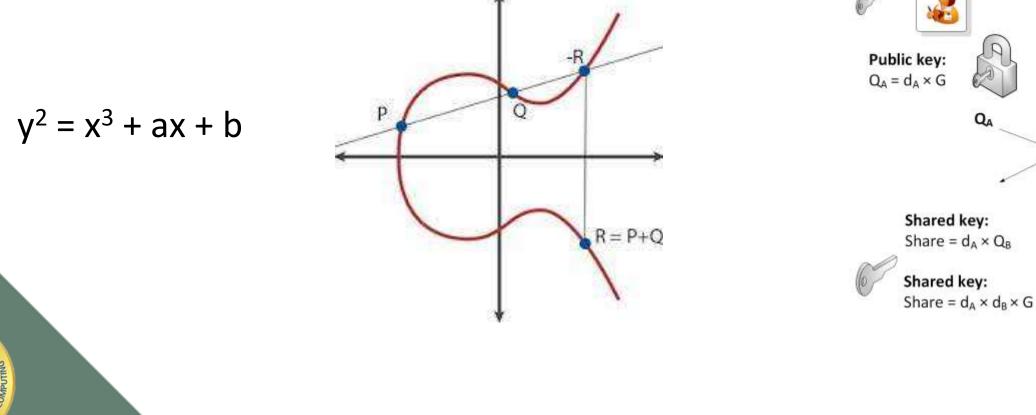


Background

सी डैक Срес

ानादेव त केवल

- Authentication, Integrity and Confidentiality 3 important factors in security.
- Encryption and digital signatures are different.
- Hash functions are irreversible.
- Public and private keys mathematically generated.


सी डैक Срес

नादेव त केवल

Background - ECC and ECDLP

- In Elliptic Curve Cryptography (ECC), the keys are coordinates of an Elliptic Curve. Why ECC?
- 160 bit key length in ECC is equivalent to 1024 bit key length in RSA.
- ECC is intractable under the assumption of Elliptic Curve Discrete Logarithmic Private key (d_A) Problem (ECDLP).

Private key (d_B)

Public key: $Q_B = d_B \times G$

QB

Shared key: Share = $d_B \times Q_A$

Shared key: Share = $d_B \times d_A \times G$

Problem & Solution

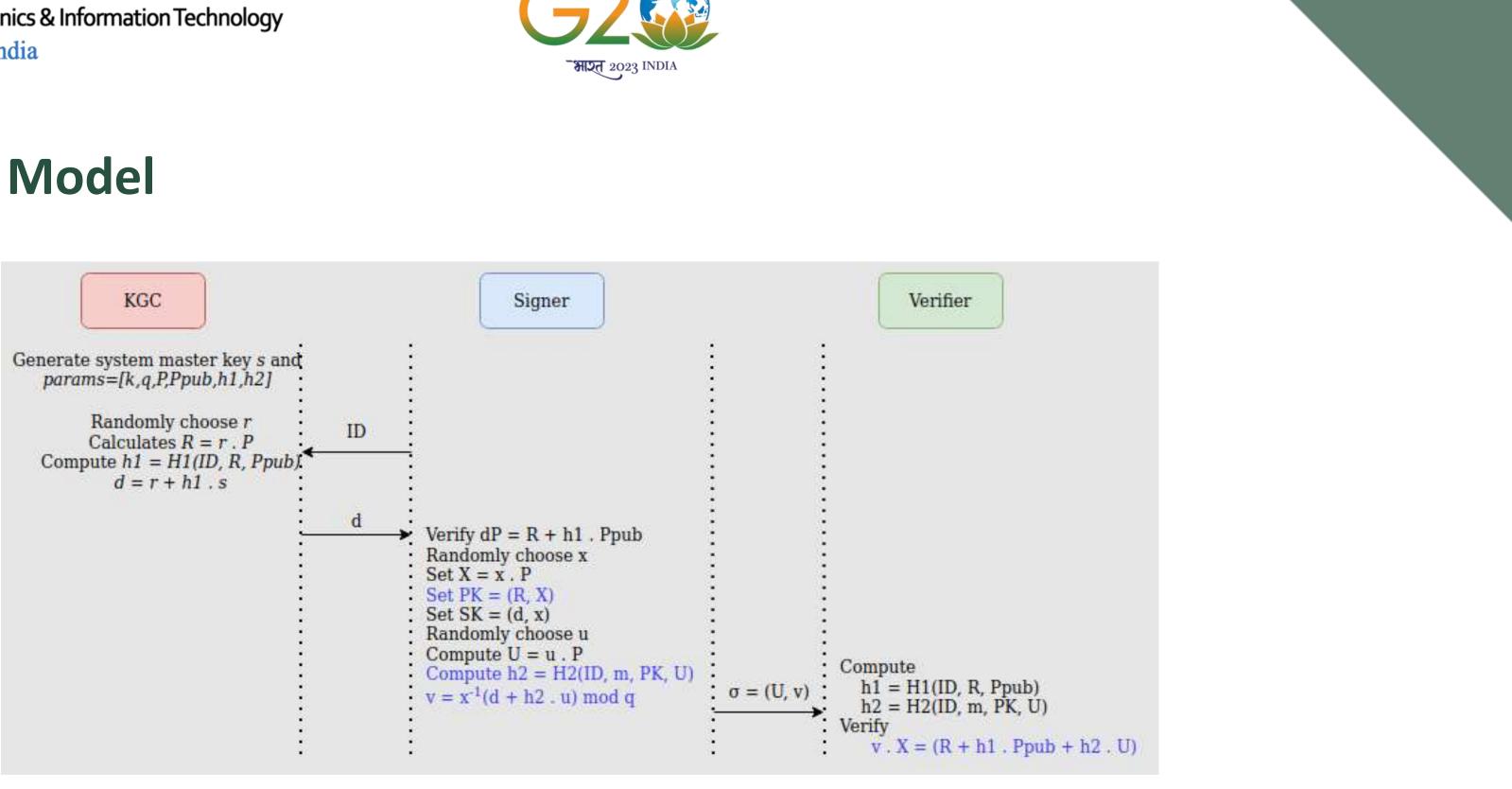
Scheme	Working	Drawbacks High complexity, re- quires more resources	
Traditional Scheme	Uses certificates from trusted third party as authentication		
ID-based cryp- tography	Uses trusted third party to distribute private public keys to each node	Key escrow problem	
Certificateless Signature Scheme (CLS)	In addition to ID based methodology each node generates its own private public private key pairs	If the algorithm is weak, it can become insecure against ad- versary attacks	

- following properties
 - Lightweight

attacks

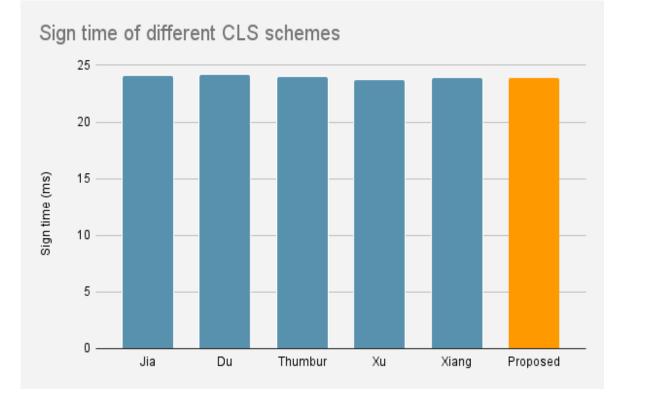
• Develop a digital signature scheme that has the

• *Requires less sign time and verify time* • Provides good level of security against adversary

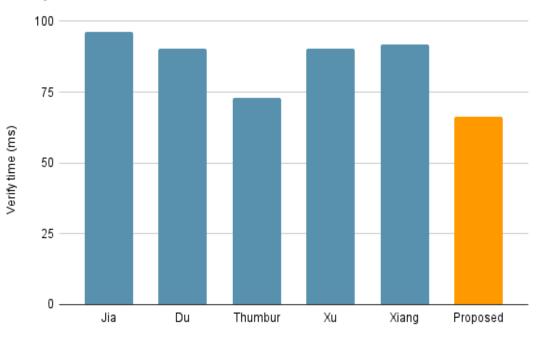


System Model

Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India



Results


संगणन विका

सी डैक Срас

गनादेव तु केवल्यम

Verify time of different CLS schemes

Scheme	Sign Operation	Verify Operation	Type I security	Тур
Jia [1]	$T_{sm} + T_{inv}$	$4T_{sm} + 2T_{pa}$	Insecure	
Du [2]	$T_{sm} + T_{inv}$	$4T_{sm}+2T_{pa}$	Secure	
Thumbur [3]	T_{sm}	$3T_{sm} + 2T_{pa}$	Insecure	
Xu [4]	T_{sm}	$4T_{sm} + 3T_{pa}$	Secure	
Xiang [5]	$T_{sm} + T_{inv}$	$4T_{sm} + 2T_{pa}$	Secure	
Proposed	$T_{sm} + T_{inv}$	$3T_{sm} + 2T_{pa}$	Secure	

pe II security

- Insecure
- Secure
- Secure
- Secure
- Secure
- Secure

Conclusion and Future work

- Algorithms with ECC provides more security compared to RSA in lesser key length. So CLS schemes that uses ECC leans towards lightweight nature.
- Our proposed scheme is 28% faster than the fastest existing CLS scheme.

- In future, we intend to evaluate the performance of proposed scheme in real life WSNs.
- Conduct energy analysis on the scheme to improve efficiency and design new solutions.

References

ी डैक CDAC

- Xiaoying Jia, Debiao He, Qin Liu, Kim-Kwang Raymond Choo, An efficient provably-secure certificateless signature scheme for Internet-of-*Things deployment, Ad Hoc Networks, Volume 71, 2018, Pages 78-87, ISSN 1570-8705, https://doi.org/10.1016/j.adhoc.2018.01.001.*
- Hongzhen Du, Qiaoyan Wen, Shanshan Zhang, Mingchu Gao, A new provably secure certificateless signature scheme for Internet of Things, Ad Hoc Networks, Volume 100, 2020, 102074, ISSN 1570-8705, https://doi.org/10.1016/j.adhoc.2020.102074.
- G. Thumbur, G. S. Rao, P. V. Reddy, N. B. Gayathri and D. V. R. K. Reddy, "Efficient Pairing-Free Certificateless Signature Scheme for Secure Communication in Resource-Constrained Devices," in IEEE Communications Letters, vol. 24, no. 8, pp. 1641-1645, Aug. 2020, doi: 10.1109/LCOMM.2020.2988818.
- Z. Xu, M. Luo, M. K. Khan, K. -K. R. Choo and D. He, "Analysis and Improvement of a Certificateless Signature Scheme for Resource-Constrained Scenarios," in IEEE Communications Letters, vol. 25, no. 4, pp. 1074-1078, April 2021, doi: 10.1109/LCOMM.2020.3042648.
- Dengmei Xiang, Xuelian Li, Juntao Gao, Xiachuan Zhang, A secure and efficient certificateless signature scheme for Internet of Things, Ad Hoc Networks, Volume 124, 2022, 102702, ISSN 1570-8705, https://doi.org/10.1016/j.adhoc.2021.102702.
- X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, and H. Cheng, "Lattice-based proxy-oriented identity-based encryption with keyword search for cloud storage," Inf. Sci., vol. 494, pp. 193–207, Aug. 2019.
- Kyung-Ah Shim, Security models for certificateless signature schemes revisited, Information Sciences, Volume 296, 2015, Pages 315-321, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2014.10.055.

Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India

सी डैक **СРАС**

ानादेव त केवल्य

THANK YOU

