Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India

4TH INTERNATIONAL CONFERENCE ON PUBLIC KEY INFRASTRUCTURE AND ITS APPLICATIONS (PKIA 2023)

SEPTEMBER 8-9TH, 2023

An Architecture for Risk-Based Authentication

System in a Multi-Server Environment

PRAMILA R M, CHRIST, PUNE SAMIKSHA SHUKLA, CHRIST, BANGALORE

www.pkiindia.in

CDAC, BENGALURU

Abstract

- Machine Learning and Adoptive Authentication is one of the advanced security solution to detect user behavior anomalies but very less work is proposed in this area. The existing works does not focus on extracting new information from AA features neither recommends efficient technique involved in developing models for user anomaly detection during the first few login attempts.
- The work proposes a design of Risk-based architecture to estimate risk for the user during the initial login

process and also when the user's data is extracted enough for prediction in a multi-server environment.

Related Work

CDAC

- Misbahuddin et al. Design of Risk based authentication system using machine learning environment.
- Solano et al. Risk-Based Static Authentication in Web Applications with Behavioral Biometrics and Session Context Analytics.
- Ding et al. User identity authentication and identification based on multi-factor behavior features
- Martin et al. An approach to detect user behaviour anomalies within identity federations
- Wiefling et al. Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a

Real-World Large-Scale Online Service

सी डैक **€⊃ค**С

गनादेव तु केवल्यम

Proposed Work – Control Flow Architecture

सी डैक **€⊃ค**С

ानादेव त केवल्यम

Proposed Work – Control Flow Architecture

सी डैक **€⊃∩С**

ानादेव तु केवल्य

BROWSER AND DEVICES FINGERPRINTING ATTRIBUTES

Category 1: Geographical Information & Network Information

Category 2: Devise and Browser Information

Category 3: Login Behavior Information

Risk Estimation Methodology

 $LoR_u = \sum_{i=1}^n UPS_i * UPW_i$

 $-UPW_i$ is a user parameter weight of the contextual feature $-UPS_i$ is a probability of occurrence of a value in a feature The value of UPS_i is the following:

$$UPS_i = \begin{bmatrix} 1 & \text{if } p(x_i) & \epsilon [0; e_1] \\ 0 & \text{if } p(x_i) & \epsilon [e_2; 1] \end{bmatrix}$$

Where:

सी डैक Срас

नादेव त केवल

e₁ and e₂ are thresholds

Risk Estimation Methodology

Conditional Evaluation at Level 2

CG4: Category 1 and Group 1& 2 Features: IP, Time Zone, Location, Latitude& Longitude.

CG5: Category 2 and Group 1& 2 Features: Canvas, Browser, Operating System, Language, Screen Size, System Type, WebGL.

CG6: Category 3 and Group 1& 2 Features: Period, RTT, Login Time, Start Week

Risk Estimation Condition at Level 2:

सी डैक CDAC If $LoR_u(CG4) > t_4$ or $LoR_u(CG5) > t_5$ or $LoR_u(CG6) > t_6$ Then raise MFA

Feature Weights and Threshold

Table 1: RBA Configurations for Level 1 Authentication

		Risk Leve	Behavior
		LLS	HLS
re ries	Geographical & Network	>0.5<1	1
ego!	Device & Browser	>0.4<0.7	>=0.7
E _f e Cat	Login Behavior	>0.5<1	1

Table 2: RBA Configurations for Level 2 Authentication

		Risk Level	Behavior
		LLS	HLS
re ries	Geographical & Network	> 0.2 < 0.4	>= 0.4
e go	Device & Browser	> 0.15 < 0.25	>= 0.25
F.	Login Behavior	> 0.15 < 0.3	>= 0.3

सी डैक Срас

नादेव तु केवल्य

Use Cases for Threshold Deciding Factor

Geographical & Network Information	Login Beha
1. IP	1. Peri
2. Latitude-Longitude	2. Logi
Location & Latitude-Longitude	3. Star
Location & Latitude-Longitude & IP	o. otar
5. Time Zone & Location & Latitude-Longitude	

6. Time Zone & Location & Latitude-Longitude & IP

Device & Browser Information

- 1. Screen-Size
- 2. Language
- 3. Operating System & Browser
- Operating System & Canvas & WebGL 4.
- Browser & Canvas & WebGL 5.
- Browser & Screen-Size 6.
- 7. System Type & Canvas & WebGL
- 8. System Type & Browser & Operating system & Canvas & WebGL & Screen Size

vior Information:

iod in Time 't Week

सी डैक **€DAC**

गनादेव तु केवल्यम्

Results of Level 1 Authentication

	/ /					ten		
USEID	TIME IONE	W Address	Canva5	BONGEY	OPERAUTIES	Period	AT	Tota
rbadmin	IST	123.252.201.190	4eef	Chrome 113.00.00	Windows 10	0	0.4012673	N
rbadmin	AST	123.252.201.191	4eef	Chrome 113.00.00	Windows 10	1	0.4352673	(1.0, 0
rbadmin	IST	123.252.201.190	4eef	Chrome 113.00.00	Windows 10	0	0.4252673	(0.0, 0
rbadmin	IST	132.252.201.191	4eef	Chrome 113.00.00	Windows 10	0	0.4152673	(0.5, 0
rbadmin	IST	132.252.201.191	4eef	Chrome 113.00.00	Ubuntu 7.10	0	0.5352673	(0.5, 0
rbadmin	IST	132.252.201.191	4eef	Chrome 113.00.00	Windows 10	1	0.5152673	(0.0, 0
rbadmin	IST	123.252.201.190	5def	Chrome 112.00.00	Windows 10	0	0.4152673	(0.5, 0
rbadmin	IST	123.252.201.190	4eef	Chrome 113.00.00	macOS Ventura 13.4	0	0.4452673	(0.0, 0

Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India

संगणन विक

सी डैक ©DAC ज्ञानादेव तु कंवल्यम्

Results of Level 2 Authentication

USEID	/~*	ne lone Address	Late Long	Location	Canvas	Browser	OperatingSy	sten Langua	& Screens	R.C. Webbil.	System	TYPE	STOOL IT	LognTin	e / 4	part Neet Pist Score
rbadmin	IST	123.252.20 1.190	20.0760:72.	IndiaMahara	5eefcac4260	Chrome 112.00.0 0	Windows 10	en-US,en	824:153	6ebabd8644	Desktoj	1	0.45267	17.30.18	2	NIL
rbadmin	IST	123.252.20 1.191	20.1160:72.	IndiaMahara	5eefcac4260	Chrome 112.00.0 0	Windows 10	en-US,en	824:1538	6ebabd8644	Desktoj	0	0.41267	17.39.04	2	(0.02, 0.0, 0.7)
rbadmin	IST	123.252.20 1.190	21.1160:73.9	IndiaMahara	5eefcac4260	Chrome 112.00.0 0	Windows 10	en-US,en	824:1540	6ebabd8644	Desktoj	1	0.42287	17.38.04	4	(0.2, 0.0, 0.15)
rbadmin	IST	123.252.20 1.190	21.1260:74.9	IndiaMahara	5cefcac4260	Chrome 113.00.0 0	Windows 10	en-US,en	824:1539	6bbabd8644	Laptop	0	0.40397	17.31.10	2	(0.18, 0.55, 0.4)
rbadmin	IST	123.252.20 1.191	20.1260:72.	IndiaMahara	4cefcac4260	Chrome 112.00.0 0	Ubuntu 7.10	en-US,en	800:1440	6cbabd8644	Desktoj	0	0.44287	17.32.07	3	(0.4, 0.65, 0.15)
rbadmin	IST	123.252.20 1.190	20.1160:72.9	IndiaMahara	Seefcac4260	Chrome 112.00.0 0	Windows 10	en-US,en	824:154(6ebabd8644	Desktoj	0	0.84235	17.31.05	2	(0.2,0.0,0.4)

RBA Updated Estimation Methodology

$LoR_u = \sum_{i=1}^n UPS_i * UPW_i$	$I_{n} = \sum_{i=1}^{n} I_{i} D_{i} = I_{i} D_{i}$
where:	$LOR_u = \sum_{i=1}^{n} OPS_i * OP$
-UPW _i is a user parameter weight of the contextual feature	where:
- UPS_i is a user parameter score that can be calculated based :	- <i>UPW</i> i is a user param
Type 1: p(x _i) probability of occurrence of a value in a feature	- <i>UPS</i> _i is a user param
Type 2: fv(x _i) feature value computed using a different methodology (refer to Table 3)	Type 1: o(x _i) occurr
	Type 2: fv(x _i) featur
Finally, the value of UPS_i is the following:	

$$UPS_{i} = \begin{bmatrix} 1 & \text{if } p(x_{i}) | fv(x_{i}) \in [0; e_{1}] \\ 0 & \text{if } p(x_{i}) | fv(x_{i}) \in [e_{2}; 1] \end{bmatrix}$$

Where:

नाणन कि

सी डैक Срас

ानादेव तु कैवल्य

- e1 and e2 are thresholds

Finally, the value of UPS_i is the following:

$$UPS_i = \begin{bmatrix} 1 & \text{if } o(x_i) & | & \text{fv} \\ 0 & \text{if } 0(x_i) & | & \text{fv} \end{bmatrix}$$

Where:

e1 and e2 are thresholds

neter weight of the contextual feature

neter score that can be calculated based :

rence of feature in the database

re value computed using a different methodology (refer to Table 3)

 $v(x_i) \in [0; e_1]$

 $v(x_i) \in [e_2; 1]$ (2)

Models Results Estimation Methodology

	MOD	MOD	EL -2	
	FRR	FAR	FRR	
USER 1	0.28	0.14	0.31	
USER 2	0.24	0.00	0.25	
USER 3	0.52	0.00	0.57	
USER 4	0.50	0.50	0.70	
AVERAGE	0.39	0.16	0.46	

FAR	
0.43	
1.00	
0.75	
0.00	
0.54	

Weightage for the Features (Public Dataset)

Level 1

FEATURES	WEIGHTAGE
IP	2
ASN	3
COUNTRY	2
REGION	3
DEVICE TYPE	2
OPERATING SYSTEM	5
BROWSER	3
RTT	8
LOGIN TIME	2

FEATURES	
IP	
ASN	
COUNTRY	
REGION	
DEVICE TYPE	
OPERATING SYST	
BROWSER	
USER AGENT	
RTT	
LOGIN TIME	
PERIOD	

Level 2

	WEIGHTAGE
	2
	3
	2
	3
	1
EM	4
	3
	2
	6
	2
	2

ML Models

मान संगणन विकास के प्रिं डेक CDAC अज्ञानादेव नु केवल्यम्। स्रानादेव नु केवल्यम्।

ML Model Results – F1 Score

	NB	RF	XGB
Imbalanced Data	85	81	81
SMOTE(OHE)	87	94	96
SMOTE(M-Estimate)	89	98	99
SMOTE(James-Stein)	87	99	98
SMOTE(Target)	92	98	99

SVM	
84	
93	
98	
99	
97	

Conclusion

• In the proposed architecture the main idea is to provide an effective authentication system in a multi server during initial login process and also when sufficient data is collected from user. The first phase uses a NON ML model for authentication and the second phase uses ML model for prediction. The proposed architecture identifies risk at two levels based on the data. The Control flow has proven to be effective with the sample dataset.

Controller of Certifying Authorities Ministry of Electronics & Information Technology Government of India

सी डैक Срас

ानादेव त केवल्य

THANK YOU

