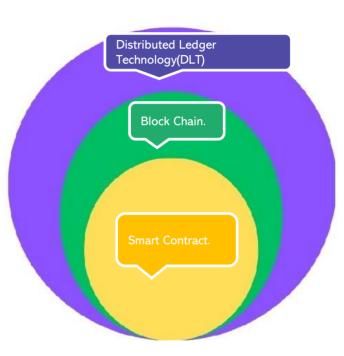


Enhancing PKI Security in Hyperledger Fabric with

an Indigenous Certificate Authority

(Funded by MeitY)


Dr. M. Gayathri Santhosh Project Associate, SETS

Dr. TR. Reshmi Principal Investigator, SETS Ms. P. R. Laxmi Eswari Chief Investigator, CDAC

What is Block Chain??

- A technology that permits transactions to be gathered into blocks and recorded.
- All the blocks are cryptographically chained in chronological order
- It allows the resulting ledger to be accessed by different servers.
- DLT, Block Chain and Smart contracts are interrelated but have a distinct significant purpose.

"A peer-to-peer distributed ledger forged by consensus and a system for smart contracts and other assistive technologies"

Permissioned vs. Permissionless Blockchain

PERMISSIONLESS/PUBLIC	PERMISSIONED/PRIVATE			
Open network and fully decentralized across unknown parties	Closed network and distributed across known parties			
Full transparency of transactions, based on open source protocols	Controlled transparency, based on organizations.			
Development via open source and mostly anonymous, with some exceptions	Development via private entities and not anonymous			
No central authority and often involves digital asset or token for incentives	A private group authorizes decisions and may or may not involve digital assets or tokens			
Highly transparent and is beneficial for speed and reconciliation across unknown parties	Highly customizable to specific use cases through diverse configurations, modular components and hybrid integrations			
Less user privacy and information control	Less transparent to outside oversight, since participants are limited and operators determine privacy requirements			
Suitable for • Cryptocurrency • Business-to-consumer • Eg. Bitcoin, Ethereum	Suitable for Government-to-citizens Governments -to-organizations E.g. Hyperledger fabric, Sawtooth			

Types of Hyperledger Blockchain Framework

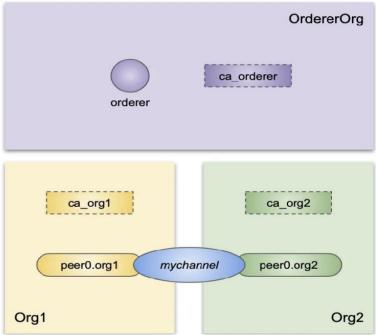
FRAMEWORK	DESCRIPTION						
Hyperledger Fabric	Intended as a foundation for developing applications or solutions with a modular architecture, Hyperledger Fabric allows components, such as consensus and membership services, to be plug- and-play.						
Hyperledger Iroha	A business blockchain framework designed to be simple and easy to incorporate into infrastructural projects requiring distributed ledger technology.						
Hyperledger Sawtooth	A modular platform for building, deploying, and running distributed ledgers. Hyperledger Sawtooth includes a novel consensus algorithm, Proof of Elapsed Time (PoET), which targets large distributed validator populations with minimal resource consumption.						
Hyperledger Burrow	A permissionable smart contract machine. The first of its kind when released in December, 2014, Burrow provides a modular blockchain client with a permissioned smart contract interpreter built in part to the specification of the Ethereum Virtual Machine (EVM).						
Hyperledger Indy	Tools, libraries, and reusable components for providing digital identities rooted on blockchains or other distributed ledgers so that they are interoperable across administrative domains, applications, and any other silo.						

Why PKI in Hyperledger?

Hyperledger relies on strong security mechanisms to maintain trust and integrity within its blockchain networks.

•Certificate Issuance

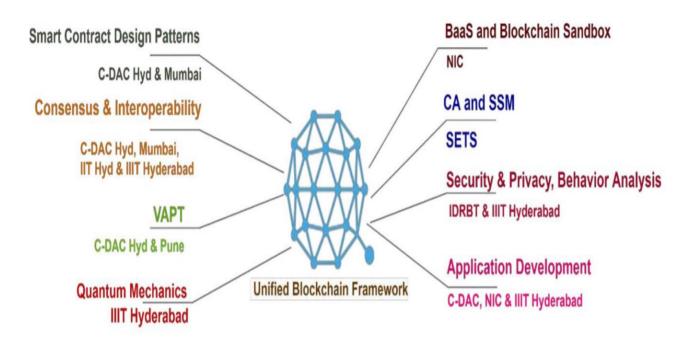
•Participants request certificates from the CA.


•CA validates the identity and issues certificates.

•Secure Communication

•Participants use certificates for secure communication.

Transaction Signing


•Transactions are signed with the keys.

Test Network Architecture

MeitY Initiative of National Blockchain Framework for National e-Governance Services

SETS-PKI

Hyperledger Fabric needs a membership identity service that helps to manage all the identities in the permissioned block chain network.

Decentralization Scalability Customization and Integration with Fabric Components CAs Seamless Integration with Fabric Tools and Utilities SETS CA is an in-house designed and developed product/software.

Creation of CA for Hyperledger

- Creation of CA's (organization)
 - TLS-CA
 - Enrolment CA
- Creation of Enrolment Certificate for establishing the identities of the components(peers)
- Registration and Enrollment of the admin, users and peers
- Certificates of all the network components are organized into an MSP directory structure and placed inside the organization folder.
- Local MSP(ca certs, tls certs, key store, sign certs)
- Organisational MSP((ca certs, tls certs, key store, sign certs)

Integration of CA

• Modify the network.sh file, there is an

if ["CRYPTO" == CA"];

• Now build the network components using

\$./network.sh up createChannel -ca

• Now SETS CA dockers are build and brings all the containers and creates default channel "mychannel"

Dynamic User Registration

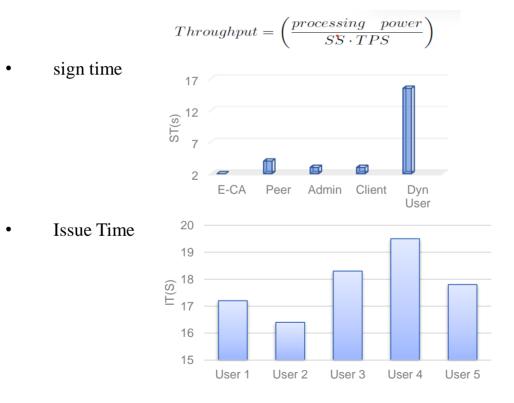
• Adding dynamic user via CA of Organisation is done using Rest API

Enrolment

- Get the IP and port of the running CA's.
- It includes two steps:
 - Registration
 - Enrolment
- Http methods

		Me	Method HTTP Header Body				dy		
			Structure						
Register Role)	mail_id		Org_Name		CA_Name		
Attributes for registration(Body)									
Role	mail_id	Org_Nam	ne CA	A_Name	CA_Ho	ost	MSP Location		

Attributes for enrollment(Body)


Performance Evaluation

HLF provides several performance metrics to monitor the performance of the CA

• Throughput

٠

Future Directions

- **Objective Achieved**: We've presented an approach to create an indigenous Certification Authority (CA) integrated into Hyperledger Fabric (HLF) for real-world use.
- Security Milestones: Our approach ensures secure peer-to-peer communication at the channel level and provides the capability to validate certificates, enhancing network security and reliability.
- **Identity Management**: Our solution offers a robust identity management framework, a fundamental aspect of any blockchain network.
- Future Directions: To further fortify privacy and security:
 •Keys will be transitioned into Software Security Modules (SSM).
 •The shift to SSM not only enhances privacy and security but also guarantees data confidentiality in the digital realm.
- Our proposed solution enhances the network's security and trustworthiness and also provides easy integration with HLF.
- The suggested approach would be helpful for any organization looking to use Hyperledger Fabric networks.