Panel Discussion on Challenges in Adoption and Implementation of Post Quantum Cryptography 4th International Conference on Public Key Infrastructure and its Applications: PKIA 2022 IEEE CS&IAS Chapter Bangalore 08-09, September 2022

C.E.Veni Madhavan

Department of Computer Science and Automation Indian Institute of Science, Bangalore C.R.Rao Advanced Institute of Math., Stats., and Computer Science

8 September 2022

C.E.Veni Madhavan	IISc, CRRAIMSCS	PQC-PKI algorithms, analysis
Shantanu Sarkar	IITM	PQC-PKI algorithms, analysis
S.D.Sudarshan	CDAC	PQC-PKI development
Ananda Mohan	CDAC	PQC-PKI evaluation
N.Subramanian	SETS	PQC-PKI management
Asish Banati	CCA-MeitY	PQC-PKI migration
Sunita Verma	MeitY	PQC-PKI migration

2

<ロ> (日) (日) (日) (日) (日)

- 9 PQC-NIST CRYSTALS: cutting, polishing, adopting
- PQC-NIST CRYSTALS: mathematical, algorithmic issues
- **9** PQC-NIST CRYSTALS: Kyber- mathematical, algorithmic issues
- **9** PQC-NIST CRYSTALS: Dilithium mathematical, algorithmic issues
- Quantum Computation : some generic issues, strands and trends

debugging tools

- approximations, errors analysis tools
- Itraps, measurements, side-channels tools
- enhancements, correctness, performance tools
- Sounter-measures, counter-counter-measures tools
- evaluation, certification, pacakging tools
- deployment, migration, maintenance, management tools

2. PQC-NIST CRYSTALS: mathematical and algorithmic issues

- Iattice geometry, linear algebra, finite fields and polynomial rings
- Isst computation (quadratic to linear to "near" constant time)
- Iarge key material, message expansion, LUT, encodings
- ompaction, truncation, rounding errors- delicate tolerance bounds
- Oryptanalysis: algebraic + combinatorial + probabilistic structures (?)
- O cryptanalysis: LWE, LWR, (R/M)LW(E/R) SVP, CVP, SIS (?)
- Ocryptanalysis: classical (NP-complete ground problems) (?)
- Oryptanalysis: quantum (absence of hidden subgroup structures) (?)
- O cryptanalysis: additional obfuscation due to hash functions (?)
- cryptanalysis: side channels hardware, software (?)
- cryptanalysis: side channels parametric, algorithmic aspects (?)
- cryptanalysis: hybrid : classical + quantum (?)

2. PQC-NIST CRYSTALS: mathematical and algorithmic issues

Preliminaries

- structures: field: Z_q, q = 7681or3321, rings: Z, Z[X], R = Z[X[/(Xⁿ + 1), R_q = Z_q[X]/(Xⁿ + 1), n = 2^{m-1}, Xⁿ + 1 is the 2^mth cyclotomic polynomial; n = 256, m = 9, q = 7681
 l_∞, l₂ norms of scalars, vectors and matrices over the field and rings
 modular reductions: ± least residues; rounding; small norm elements
 deterministic, probabilistic sampling (uniform, binomial distributions)
 extendable output function (XOF), hash functions (SHAKE, Keccak)
 compression (MSB extraction) with rounding, decompression (MSB re-construction) with rounding; bounds on the discrepancy |x - y|,
 - where y = decompression(compression(x))
- NTT number theoretic transforms for fast discrete Fourier transform based convolution produt of ring elements with appropriate powers of roots unity in $Z_{q,i}(O(n^2)$ to $O(n \log n)$ multiplication)

keygen:

- **(**) parameters: q, k, d_t, d_u, d_v , generator, root of unity in Z_q
- ② uniformly generated scalars $ho,\sigma\in\{0.1\}^{256}$
- **③** matrix **A** over $R_q^{k \times k}$ by determininistic sampling ρ
- vectors **s**, **e** over β_n^k sampling σ
- **(a)** public key pk: $\mathbf{t} = \text{compress}(\mathbf{As} + \mathbf{e}, d_t)$
- oprivate key sk : s

encryption:

- **1** generate $r \in \{0,1\}^{256}$
- 2 uniformly generated $(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2)$ by sampling r,
- encoded message m
- message mask : $\mathbf{u} = \mathbf{A}^T \mathbf{r} + \mathbf{e_1}$: (sampling r) compressed(d_u)
- **5** $\mathbf{t} \leftarrow \operatorname{decompress}(\mathbf{t}, d_t)$
- encryption : $v = \mathbf{t}^T \mathbf{r} + e_2 + \lceil q/2 \rfloor \cdot m$: compressed (d_v)
- cipher : $c = (\mathbf{u}, v)$

3. PQC-NIST CRYSTALS: Kyber mathematical and algorithmic issues

- decryption: $\mathbf{s}, c = (\mathbf{u}, v)$
 - $\mathbf{u} \leftarrow \operatorname{decompress}(\mathbf{u}, d_u)$
 - $v \leftarrow \text{decompress}(\mathbf{v}, d_v)$
 - decrypted message = compress($v \mathbf{s}^T \mathbf{u}, 1$)

3. PQC-NIST CRYSTALS: Kyber mathematical and algorithmic issues

key encapsulation:

- **1** gnerate $r \in \{0,1\}^{256}$
- 2 uniformly generated $(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2)$ by sampling r,
- **③** encoded message $m \leftarrow \{0, 1\}^{256}$
- $(\hat{K}, r) \leftarrow G(H(pk, m))$ *hash functions G, H
- $(\mathbf{u}, \mathbf{v}) \leftarrow Encrypt((\mathbf{t}, \rho), m, r)$
- **(**) cipher : $c = (\mathbf{u}, v)$
- $K \leftarrow H(\hat{K}, H(c))$
- \bigcirc send (c, K)

3. PQC-NIST CRYSTALS: Kyber mathematical and algorithmic issues

key decapsulation:

- $m' \leftarrow \text{Decrypt}(\mathbf{s}, (\mathbf{u}, v))$
- $\widehat{K'}, r') \leftarrow G(H(pk, m')$
- **③** (**u**', v') ← Encrypt((**t**, ρ), m', r')
- if $(\mathbf{u}', r') = (\mathbf{u}, r)$ then send $K \leftarrow H(\hat{K}', H(c))$ else send $K \leftarrow H(z, H(c))$