
Experimenting Integration of Custom ECDSA Algorithm in OpenSSL

PUBLIC KEY INFRASTRUCTURE AND ITS

APPLICATIONS (PKIA 2024)

5th INTERNATIONAL CONFERENCE ON

SEPTEMBER 5 -6 th, 2024

G e e t h a S i v a n a n t h a m , A k i l a K r i s h n a n

S E T S , C h e n n a i

D r T R R e s h m i

P r i n c i p a l I n v e s t i g a t o r - U B F

S c i e n t i s t ,

S E T S , C h e n n a i

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Outline

• Introduction

• Literature Review

• Methodology

• OpenSSL Libraries

• OpenSSL Engine

• Service Providers

• Recommendations

• Conclusion

• References

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Introduction

• OpenSSL is a widely used cryptographic library essential for establishing secure communication through

Transport Layer Security (TLS) protocols.

• It is also a key component in software-based secure key storage solutions, facilitating cryptographic

operations.

• There is a growing need to customize OpenSSL's cryptographic modules for two main reasons:

i) To mitigate known vulnerabilities in existing OpenSSL implementations.
ii) To integrate custom cryptographic solutions into applications like blockchain.

• This article explores the methods for adding custom cryptographic implementations into the OpenSSL library,

discussing the advantages and disadvantages of each approach.

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Literature Review

Social Media
/pkiindiahttps://pkiindia.in

Attack Algorithm Nature of Attack Impact OpenSSL Version

Cold Boot Attack [1] AES Attempt to retrieve

precomputed AES round

keys from memory dumps

Retrieved the

distorted 11 round

keys of AES 128.

OpenSSL 1.1

Cache Bleed

Attack[2]

RSA Based on the timing

conflicts in L1 cache access

identifies the

exponentiation operations

Retrieves about 60%

of 1024 bit key in

RSA

OpenSSL 1.0.2f

Singular Curve

Point

Decompression

Attack (SCPD) [4]

ECDSA Attempt to know SECP

curve base point before

the scalar multiplication

Fetches private key

from one faulty

signature

OpenSSL 1.1.1

Fault Injection

Attack [5]

ECDSA Side channel attack Retrieved the secret

key from four ECDSA

signatures

OpenSSL 1.1.1

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Methodology

• The regular crypto modules will be hosted by libcrypto module under

common services which will provide the implementation of all crypto

modules.

• The legacy APIs provides a platform for activating engines for common

crypto standards like public key crypto standard (PKCS11).

• The third-party provider provides API calls for hosting vendor based crypto

algorithms inside OpenSSL like open quantum safe (OQS) interface to

OpenSSL which enables crypto operations using post quantum algorithms

through OpenSSL calls.

• The addition of custom crypto algorithms into OpenSSL can be

accommodated in three ways:

i) addition of new crypto algorithm into libcrypto module of OpenSSL [6].

ii) Creating new engine to use the custom crypto implementations [7].

iii) Defining a service provider library with the set of custom

implementations and interfacing with OpenSSL [8].

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

OpenSSL Libraries

• The addition of custom ECDSA implementation written in C

language in to the inbuilt crypto folder of openSSL. The

detailed steps of integration are discussed as follows:

i. The source files of the crypto algorithm written in C

language must be added to openSSL/crypto/ec

folder.

ii. EVP interface integration

iii. Crypto objects OID creation

iv. Utility Mapping

v. TLS settings configuration

vi. OpenSSL configuration settings

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

OpenSSL Engine
• The OpenSSL engine is modular framework that enables the

integration of various custom cryptographic implementations,

hardware security modules, or alternative software algorithms into

the OpenSSL library.

• The PKCS11 engine for OpenSSL is a commonly used module

engine for integration of secure key storage options with OpenSSL.

• The implementation of custom ECDSA based engine in OpenSSL

requires following modifications

i. Define the Engine Structure

ii. Implement Engine Methods:

iii. Integrate with OpenSSL’s EVP System

iv. Compile and Link the Engine:

v. Test the Engine Integration

vi. Configure OpenSSL to Use the Engine

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Service Providers to OpenSSL

• OpenSSL3.0 and higher versions hosts the provider API through which custom cryptographic implementations can

be implemented.

• . The detailed work flow of service provider library is discussed as follows:

i. The provider holds a library of cryptographic implementations. The provider.c file is initialized with an

identifier, version information and name. The provider capabilities like supported algorithms, data formats,

lifecycle of algorithms and error handling will also be coded.

ii. The custom algorithm must be implemented and attached to calls in the provider.c file. A make file must be

written to compile the provider code.

iii. A test application (testprovider.c) must be written to call the compiled instance of (provider.so) of the

provider library inside OpenSSL.

iv. The OpenSSL command line calls can now be issued to use the provider implementations of cryptographic

algorithms.

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Recommendations

Consideration of Separate Engines or Service Providers: While using separate engines or service providers with OpenSSL

may reduce overhead, it is important to note that the cryptographic algorithms will reside outside the core libcrypto

module of OpenSSL.

Potential Security Risks: This external placement of cryptographic modules could introduce security vulnerabilities,

making them more susceptible to attacks.

Impact on Applications: Applications such as Hardware Security Modules (HSMs), which interact with OpenSSL through

built-in interfaces like PKCS#11, may not be aware of these additional external interfaces due to OpenSSL's abstraction.

This lack of awareness could result in compatibility issues or reduced security.

Recommendation for Specific Environments: The engine and service provider approaches are recommended primarily

for environments where OpenSSL's cryptographic operations can operate independently without requiring direct

application interface integration.

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

Conclusion and Future Work

• The article highlights the need for custom cryptographic implementations in applications such as permissioned

blockchain and Hardware Security Modules (HSMs).

• Embedding a custom cryptographic library directly into OpenSSL is identified as a practical solution for these types of

applications.

• OpenSSL version 1 supports the integration of separate cryptographic modules (libcrypto), allowing for significant

modifications to the EVP (Envelope) structure for symmetric algorithms and the OSSL structure for asymmetric

algorithms.

• This method, while potentially increasing code overhead, enables the addition of cryptographic modules that meet FIPS

standards. It also addresses security vulnerabilities present in other approaches and offers improved timing efficiency.

• The choice of integration method and OpenSSL version should be guided by the specific needs of the application,

balancing security, performance, and feasibility.

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

References

1. Mishra, S.P., Attacks & Analysis of OpenSSL AES crypto material from memory dumps.
2. O. Aciicmez and W. Schindler, "A vulnerability in RSA implementations due to instruction cache analysis and its

demonstration on OpenSSL" in CT-RSA, San Francisco, CA, US, pp. 256-273, Apr 2008.
3. S. Fan, W. Wang, and Q. Cheng, “Attacking OpenSSL Implementation of ECDSA with a Few Signatures,” Oct. 2016, doi:

https://doi.org/10.1145/2976749.2978400.
4. A. Takahashi and Mehdi Tibouchi, “Degenerate Fault Attacks on Elliptic Curve Parameters in OpenSSL,” Jun. 2019, doi:

https://doi.org/10.1109/eurosp.2019.00035.
5. “Heartbleed 101 - IEEE Journals & Magazine,” Ieee.org, 2014, doi: https://doi.org/10.1109/MSP.2014.66.
6. J. Lam, S.-G. Lee, H.-J. Lee, and Vincentius Christian Andrianto, “Custom Cryptographic Protocol Implementation Method

Based on OpenSSL,” Information Security and Cryptology, vol. 27, no. 3, pp. 459–466, Jan. 2017, doi:
https://doi.org/10.13089/jkiisc.2017.27.3.459.

7. https://wiki.OpenSSL.org/index.php/Creating_an_OpenSSL_Engine_to_use_indigenous_ECDH_ECDSA_and_HASH_
Algorithms.

8. https://developer.ibm.com/tutorials/awb-quantum-safe-OpenSSL/
9. Jurkiewicz, P. and Niemiec, M. (2016). Implementation of a New Cipher in OpenSSL Environment the Case of INDECT Block

Cipher. International Journal of Computer and Communication Engineering, 5(1), pp.41–49.
doi:https://doi.org/10.17706/ijcce.2016.5.1.41-49.

Social Media
/pkiindiahttps://pkiindia.in

https://doi.org/10.1145/2976749.2978400
https://doi.org/10.1109/eurosp.2019.00035
https://doi.org/10.1109/MSP.2014.66
https://wiki.openssl.org/index.php/Creating_an_OpenSSL_Engine_to_use_indigenous_ECDH_ECDSA_and_HASH_Algorithms
https://developer.ibm.com/tutorials/awb-quantum-safe-OpenSSL/
https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

THANK YOU

Social Media
/pkiindiahttps://pkiindia.in

https://www.facebook.com/pkiindia/
https://www.facebook.com/pkiindia/
http://www.youtube.com/@PKIIndia
http://www.youtube.com/@PKIIndia
http://www.pkiindia.in/
http://www.pkiindia.in/
https://mobile.twitter.com/pkiindia
https://mobile.twitter.com/pkiindia

