Post-Quantum Cryptography:

From the Point of View of Hardware Security

Debdeep Mukhopadhyay
Professor
Secured Embedded Architecture Laboratory (SEAL)

Department of Computer Science and Engineering

IIT Kharagpur
debdeep@cse.iitkgp.ac.in
debdeep.mukhopadhyay@gmail.com



S ECURED

EMBEDDED
ARCHITECTURE

LABORATORY

VERTICAL DISCRETE ALGORITHM HORIZONTAL TIMING
SECURITY COMPUTATION

ATT AC KHUDRA OPTIMIZATION
MICKEY MICRO GALOIS TVLA PARALLEL

FIBONACCI PUF DEGRFE ERROR TEMPLATE WATERMARKING
BLOCK PRIME HASH GROUP PREDICTOR SBOX POWER £CC RsA
COMMUNICATION FIELD ‘“"”‘é‘ﬁlﬁﬁ””yé}\cue SUPPORT

SYSTEM LFSR FAULT MULTICORE

TING THFORY
CORRECTION BRANCH .
STREAM CRYPTANALYSIS FUNCTION

werov. COUNTERMEASURE

BYTE  DECRYPTION LOGARITHM
TROJAN  PERMUTATION MACHIC]gIIJEING RING
EMEEDDED AES CORRELATION SIDE-CHANNEL ALGEBRAIC

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Dr Chester Rebeiro, [ITM

Dr Sarani Bhattacharya,
Imec Belgium, IIT KGP

Dr Arnab Bag,
Imec Belgium

Dr Durga Prasad. Sahoo, 4
Dr Anju Johnson, University SYnopsys Dr Sikhar Patranabis, IBM RL

Dr Santosh Ghosh, Intel Labs, USA  Dr Bodhisatwa Mazumdar, IIT Indore Dr Subidh Ali, IIT Bhilai " /uddersfield

‘ o= e h ! Dr Harishma Boyapally,
Dr Sayandeep Saha, NTU SN, IIT Roorkee Dr Debapriya B Roy, TUM, Dr Urbi Chatterjee, IIT Kanpur NTU Singapore.
UCL, IIT B IIT Kanpur Dr Manaar Alam, NYU,

USA/AD

Dr Durba Chatterjee,
Radboud Univ, Netherlands.

Dr Akashdeep Saha Dr Anirban Chakraborty,
NYU USA/AD. ‘ MPI/Ruhr Univ, Germany.




Secured Embedded

(/
A

Arch |!ectu re

Laboratory (SEAL) &

® )
i/

Trojan Design

Privacy Enabling

Detection

Micro-architectural VLSI

Attacks of
Cryptosystems

Physically
Uncloneable

Techniques )
Functions

Formal
Verification
For
Finite Field
Circuits

Post Quantum

Side Channel
Analysis and
Countermeasures

Cyber Physical _
System Security loT Security
Machine Learning
for Attacks
& Defences

Physical Hardware
Assurance
By Imaging

(N

Research Focus of SEAL, lIT Kharagpur

http://cse.iitkgp.ac.in/resgrp/seal/

16 PhD Graduates

4 Books (Mentioned in the global
bestseller list for 2015)

First state-of-the-art lab on
Hardware Security in India, and
among the few in Asia.

Funding of Rs 50 Crores

Invited Talks: Dagstuhl Seminars,
Shonan Seminar, Intel, Tl, Canon,
IBM-Research, Bosch, NTT Labs,
K U Leuven, Shanghai JiaTong
Univ, Stanford, Columbia, NYU
(USA, Shanghai, UAE), TU
Darmstadt, TelecomParis, NTU
Singapore, SUTD.

Shanti Swarup Bhatnagar Award
2021 for Science & Technology,
Swarnajayanti Fellowship (15-16),
DSCI Award from Data Security
Council of India (2018)




A Quick Look into SEAL, IIT Kharagpur

4 e
&7/ o

Secured Embedded Architecture Laboratory (SEAL)

Prof. Debdeep Mukhopadhyay

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email id: debdeep@cse.iitkgp.ac.in

.l B ===

Best Lab Demo at IEEE International Conference on PHYSICAL ASSURANCE and INSPECTION of ELECTRONICS (PAINE)

https://paine-conference.org/paine-2023-winners/




Shor’s / . :
PR el Post-Quantum” Cryptomania

Public-Key
Cryptography
(in a quantum world)

Discrete Lo Factorization
Land ° Land Lattice Land Code Land Isogeny Land




How is the (classical) cryptographic landscape shaped?

- What we want from cryptography : Informally, a user would like to protect
confidential data from being recovered by an adversary.



How is the (classical) cryptographic landscape shaped?

- What we want from cryptography : Informally, a user would like to protect
confidential data from being recovered by an adversary.

- How to do that : Find hard to solve mathematical problems (like computing the
logarithm of modular exponentiation) and build a cryptosystem about it.



How is the (classical) cryptographic landscape shaped?

- What we want from cryptography : Informally, a user would like to protect
confidential data from being recovered by an adversary.

How to do that : Find hard to solve mathematical problems (like computing the
logarithm of modular exponentiation) and build a cryptosystem about it.

- A note on "assumption": Note that such hard mathematical problems are
assumed/believed to be intractable by efficient adversaries (say a poly-bounded
adversary in time and memory)

- Caveat: This is only an assumption, not a guarantee. Implying, if a hard problem
is tractable by an adversary in future, all cryptosystems based upon it are
vulnerable



How is the (classical) cryptographic landscape shaped?

- What we want from cryptography : Informally, a user would like to protect
confidential data from being recovered by an adversary.

How to do that : Find hard to solve mathematical problems (like computing the
logarithm of modular exponentiation) and build a cryptosystem about it.

- A note on "assumption": Note that such hard mathematical problems are
assumed/believed to be intractable by efficient adversaries (say a poly-bounded
adversary in time and memory)

- Caveat: This is only an assumption, not a guarantee. Implying, if a hard problem
is tractable by an adversary in future, all cryptosystems based upon it are
vulnerable

. Quantum Computing can solve classical hard problems efficiently!

10



Stepping into the Post-Quantum world

- What we want from (post-quantum)cryptography : Informally, a user would like to
protect confidential data from being recovered by both classical and quantum adversary.

11



Stepping into the Post-Quantum world

- What we want from (post-quantum)cryptography : Informally, a user would like to
protect confidential data from being recovered by both classical and quantum adversary.

Formally, find hard mathematical assumptions that are secure under two models:
- Random Oracle Model

- Used extensively to model a classical adversary
- Gives the adversary the capability of querying a black-box hash function

12



Stepping into the Post-Quantum world

- What we want from (post-quantum)cryptography : Informally, a user would like to
protect confidential data from being recovered by both classical and quantum adversary.

Formally, find hard mathematical assumptions that are secure under two models:

- Random Oracle Model
Used extensively to model a classical adversary
- Gives the adversary the capability of querying a black-box hash function

o (Quantum-accessible) Random Oracle Model
Models a qguantum adversary
- Gives the adversary the capability to query in superposition, a special property in
guantum physics in which a particle (like a photon) can co-exist in multiple states
at the same time (thus allowing parallel computation capability)

13



Roadmap of developing PQ Cryptosystems

- An overview on developing a PQ Cryptosystem
- Step 1: Define new hard problems secure in ROM and QROM security models

- Step 2: Build cryptosystems atop it, and reduce their security to that of the hard
problem
- Sample reduction statement: "If <X> hard problem is secure against a poly-
bounded adversary in ROM and QROM security model, then my cryptosystem <C>
is also secure against a poly-bounded classical and quantum adversary"

14



Roadmap of developing PQ Cryptosystems

- An overview on developing a PQ Cryptosystem
- Step 1: Define new hard problems secure in ROM and QROM security models

- Step 2: Build cryptosystems atop it, and reduce their security to that of the hard
problem
- Sample reduction statement: "If <X> hard problem is secure against a poly-
bounded adversary in ROM and QROM security model, then my cryptosystem <C>
is also secure against a poly-bounded classical and quantum adversary"

- Step 3: Set parameter levels for the cryptosystem, allowing for implementation
optimizations at the software level

15



Roadmap of developing PQ Cryptosystems

- An overview on developing a PQ Cryptosystem
- Step 1: Define new hard problems secure in ROM and QROM security models

- Step 2: Build cryptosystems atop it, and reduce their security to that of the hard
problem
- Sample reduction statement: "If <X> hard problem is secure against a poly-
bounded adversary in ROM and QROM security model, then my cryptosystem <C>
is also secure against a poly-bounded classical and quantum adversary"

- Step 3: Set parameter levels for the cryptosystem, allowing for implementation
optimizations at the software level

- Step 4: Look for hardware/software co-design (or complete hardware) acceleration

16

- Step 5: Look and secure the cryptosystem against side-channels



Step 1: Define new hard problems secure in
ROM and QROM security models

17



PQ resistant hard problems

. Several types:

- Code-based : based on linear codes

o Multivariate-based : based on multivariate polynomials
o Lattice-based : based on lattices

- All these problems, like their classical counterparts, are assumptions. That is, they are
believed, so far, to be intractable against poly-bounded adversaries in time and memory.

18



What is a Lattice?

[ il

I 1 I I

I R A A R R A N B A B B R B
A Iattice IS a regular array of points in space. /

We can connect the dots to form parallelograms

I I I I I I I

The Iattlce may be descrrbed by giving
basis vectors that span a parallelogram.

, Joseph Silverman

Brown University & Microsoft Research

19



What is the Closest Vector Problem?

Suppose that you know a basis for the lattice L. 7#

", Suppose that sor/;leén/e g/ivés /yo/u a/ p/oint P.

mmamml |

Challenge: Find the lattice point Q that is closest to P.

T




Noise and Hardness

- Noise has been found to convert “easy” problems to more hard instances.

. Let’s start with a simple instance of greatest-common-divisor (GCD).

. Let's say that one chooses a secret integer s, then samples several random
integers g;’s

. Define multiples of s, by p; =sq;,1 <i <1

. lItis easyto compute s,s = gcd(qq,:+,q;).

. But what if we are given “approximate multiples” of s instead of exact
multiples, that is, if one adds small integers r; to the p_i’s we have:

bi =Sqi+Ti,1SiSl

. How to obtain s? This problem, called as the Approximate Common Divisor

Problem is hard for properly chosen parameters.

21



Learning With Errors’

aj1 811 + a2 %812 + -+ + A *81, = by fepoe»ag ks + A *s;a + o0 + Ay *S1, & by
a1 *Sg1 + A *Sga + ++ + Az, *Syy = by Legrd »ag %Sg1 + Az %Sy + o+ + Ay * Sy X by
u
am1 *Sm1 + Am2 *Sm2 + *** + Qpn * Spn = bm Tem »am1 ¥*Sm1 + @m2 ¥Sm2 + *** + Qmn *Spn R bm
k—/
Adding Errors
Exact System ”~ Approximate System

Removing Errors

1. O. Regeyv, “On lattices, learning with errors, random linear codes, and cryptography”, 2005.

22



An Example

Suppose that s = (3,7),and e; = e, = —1

551 + 3s, = 35

4s, + 25, = 27

Performing standard row-reduce, we obtain s = (%,g)

Rounding this works tos = (6,3), which is far off from
the actual result.

23



The Learning With Errors (LWE) Problem

(@10, b10) (ag, be) (a'y,b',) @b (a@'9,b's)
as,b3
(as, bs) || (ag, bg) (ag, bo) T (a'g,b'g)
aqo, ! !
(az2,b2)| | (a,,b,) =00 @'y, b'y) | (@7, b7)
(a]_; bl) (a3, b3) (a4_, b4) (a L s 1) (a'5, bls) (a’6; b,6)
! ! $
SEZZL,ai‘EZZ,e*Q;bi=ai'S+e aiizg’bﬂ_zq

Problem: Distinguish the box with LWE samples from the box

with uniform random samples efficiently (in polynomial time).

Find s by observing the inputs and outputs — Search-LWE. While the problem of
distinguishing is called Decisional-LWE problem.

24



PQ resistant hard problems : What to choose?

- The choice of the hard problem depends upon the requirements of the cryptosystem.
Examples:

- Hardness level: Whether worst-case or average-case hardness is needed

- Worst-case : There exists at least one instance of the problem that is difficult to solve.
Cryptosystems depending on worst-case hardness should use such instances only

- Average-case: The problem is hard even on random samples of problem instances.

Cryptosystems depending on average-case hardness can be more lenient on their
problem samples.

Lattice-based problems have provably worst-case to average-case reductions.

25



PQ resistant hard problems : What to choose?

- The choice of the hard problem depends upon the requirements of the cryptosystem.
Examples:

- Hardness level: Whether worst-case or average-case hardness is needed

- Optimization opportunities : Whether the structure of the problem has opportunities for
optimizations

- Lattice-based schemes can exploit the structure of algebraic Rings to have reduced
storage and faster runtimes through NTT (Number Theoretic Transform).

- Code-based schemes work on Binary Fields only.

- Multivariate-based schemes can benefit from optimizations in related literature on
improving polynomial evaluations.

26



PQ resistant hard problems : What to choose?

- The choice of the hard problem depends upon the requirements of the cryptosystem.
Examples:

- Hardness level: Whether worst-case or average-case hardness is needed

- Optimization opportunities : Whether the structure of the problem has opportunities for
optimizations

- Parameters: Size of key, ciphertext etc. in the cryptosystem built upon the problem.

27



Step 2: Build cryptosystems atop the hard
problems

28



NIST Standardization (and other research)

Process of standardizing cryptosystems built upon these problems

- Two types:

- Key Encapsulation Mechanisms : A PQ cryptosystem to establish (usually symmetric)
session keys between two parties

- Digital Signature schemes : PQ cryptosystems to establish authenticity of messages by
signing them with the identity of initial message holder.

Other cryptosystems (outside the scope of standardization)
- Privacy Enabling Technologies : post-quantum Fully Homomorphic Encryption, Multi-Party
Computation, Searchable Symmetric Encryption etc.
- Encryption schemes : generic encryption schemes, identity based schemes, attribute-
based encryption schemes
o Many others....

29



NIST Standardization (and other research)

Process of standardizing cryptosystems built upon these problems

- Two types:

- Key Encapsulation Mechanisms : A PQ cryptosystem to establish (usually symmetric)
session keys between two parties

- BIKE : Code-based KEM

- Classic McEliece : Code-based KEM

- HQC : Code-based KEM

- SIKE . Isogeny based

- Kyber : Lattice based (chosen for standardization)

- Digital Signature schemes : PQ cryptosystems to establish authenticity of messages by
signing them with the identity of initial message holder.

30



NIST Standardization (and other research)

Process of standardizing cryptosystems built upon these problems

- Two types:

- Key Encapsulation Mechanisms : A PQ cryptosystem to establish (usually symmetric)
session keys between two parties

- Digital Signature schemes : PQ cryptosystems to establish authenticity of messages by
signing them with the identity of initial message holder.

- CRYSTALS-Dilithium  : Lattice based (chosen for standardization)

- Falcon : Lattice based (chosen for standardization)
® SPHINCS+ : Hash based (chosen for standardization)

31



Step 3: Choose parameter levels

32



Parameter Levels

- An extremely important choice

33



Parameter Levels

- An extremely important choice

- Tradeoff between security and efficiency

- Small / Conservative parameters

o Efficient
o (Almost always) insecure against poly-bounded adversary in time and memory

- Large parameters

o Inefficient
o Secure against poly-bounded adversary in time and memory

34



Parameter Levels

- An extremely important choice

- Tradeoff between security and efficiency

- Small / Conservative parameters

o Efficient
o (Almost always) insecure against poly-bounded adversary in time and memory

- Large parameters

o Inefficient
o Secure against poly-bounded adversary in time and memory

o Strategy 1: Choose large params and throw ever-improving computing power and
parallelization at it

35



Parameter Levels

An extremely important choice

Tradeoff between security and efficiency
- Small / Conservative parameters

o Efficient
o (Almost always) insecure against poly-bounded adversary in time and memory

- Large parameters

o Inefficient
o Secure against poly-bounded adversary in time and memory

o Strategy 1: Choose large params and throw ever-improving computing power and
parallelization at it
o What about resource-constrained devices?

36



Parameter Levels

- An extremely important choice

- Tradeoff between security and efficiency

- Small / Conservative parameters

o Efficient
o (Almost always) insecure against poly-bounded adversary in time and memory

- Large parameters

o Inefficient
o Secure against poly-bounded adversary in time and memory

o Strategy 2: Carefully compute (wherever possible) the bit security of the cryptosystem and
offer multiple levels of security. Users are free to choose
o Allows users to tradeoff efficiency/security based on available compute power

37



Step 4: Hardware Support for Post-Quantum
Protocols

38



TLS basic Architecture

TLS is the current standard protocol for establishing secure
communication on the Internet.

Client Server

Client_Hello !

Client_Key_Share

Not PQ

TLS consists of three basic steps: Connection establishment,

TLS handshake and the encryption of application data using Resilient

Server_Hello S
symmetric cryptography = i T " Servel Key_Share” ~ "1~
I 1
: P Change_Cipher_Spec I
. . ' Server_Certificate 1
In the figure, we have shown a overview of TLS 1.3. I 1 S v
oy Server_Signature I
=1 -
, . . . - I Finished I
o Inthe first step, the client contacts the server with the Client_Hello message consisting of "1‘ |
specific parameter I _ "
o To reduce network traffic, the client also sends its key material (Client_Key Share) for the 1 Client_Hello o
key establishment ! Client_Key_Share i'
o Inthe second step, the server replies with the Server_Hello that is similar to the : :
Client_Hello I m
o The server reply is signed by its private key. l— secibd Dala, jansior 3wl
1 I

o Inthe last step, the client also transmits a confirmation for encryption of subsequent
messages (Change_Cipher_Spec) and its readiness to communicate securely (Finished). 39

Overview of TLS Handshake



PQ-TLS: Making TLS PQ Secure

TLS is the current standard protocol for establishing secure

communication on the Internet. Client Server
: |
. . . N P N A U I I
TLS consists of three basic steps: Connection establishment, T I CientPublckey N = === — =
KYBER KEYGEN 1! HKYBER ENCAPS

TLS handshake and the encryption of application data using

|

|

|
symmetric cryptography :

|

: Public Key extract | : Client Key Exchange
|
|
|
|
|
|

| | _ Certicale 11 ¢ icato(DILITHIUM PUBLIC KEY)
In the figure, we have introduced our version of TLS 1.3 DILTIUM SIGN VERFY] |

1
KYBER DECAPS :.
SHARED SECRET |:

—-— e s e e e ol

|
1
1 1 DILITIUM KEYGEN
1

1" DILITHIUM SIGN

40



Choosing the PQC algorithms: Kyber and Dilithium

In order to make the public key infrastructure quantum-safe, the pre-quantum schemes
in protocols such as TLS are needed to be replaced

- We choose Kyber for the key encapsulation mechanism (KEM) and Dilithium for the digital
signature generation which are the most important components of TLS

Both Dilithium and Kyber has a similar mathematical background and has a similar
structure of NTT multiplier and Keccak core.

KGP-PQC-TLS: An agile Post-Quantum TLS accelerator which encompasses all the security

levels of Kyber and Dilithium
o From an application perspective, a unified design has helped us in implementing post-quantum version of
TLS-1.3 protocol.

Siddhartha Chowdhury, A Minimalistic Perspective on Hardware Designs for Modern-day Public-Key Cryptosystems
(MS Thesis)




Hardware Acceleration : A Case Study of PQ-TLS

- Case Study of an hardware accelerated implementation of a Post Quantum TLS accelerator for

resource constrained devices. Developed by Secured Embedded Architecture Laboratory, lIT
Kharagpur.

42



Hardware Acceleration : A Case Study of PQ-TLS

. Case Study of an hardware accelerated implementation of a Post Quantum TLS accelerator for

resource constrained devices. Developed by Secured Embedded Architecture Laboratory, lIT
Kharagpur.

- General considerations of designing hardware acceleration units for PQ cryptosystem

o Must not affect the param choices (and transitively the security!)

43



Hardware Acceleration : A Case Study of PQ-TLS

Case Study of an hardware accelerated implementation of a Post Quantum TLS accelerator for

resource constrained devices. Developed by Secured Embedded Architecture Laboratory, lIT
Kharagpur.

General considerations of designing hardware acceleration units for PQ cryptosystem
o Must not affect the param choices (and transitively the security!)
- Should not optimize any security critical operations

o For instance, repetitive computations might seem an avenue for optimization, but will
affect CCA-2 security (security against chosen ciphertext attacks)

44



Hardware Acceleration : A Case Study of PQ-TLS

Case Study of an hardware accelerated implementation of a Post Quantum TLS accelerator for

resource constrained devices. Developed by Secured Embedded Architecture Laboratory, lIT
Kharagpur.

General considerations of designing hardware acceleration units for PQ cryptosystem
o Must not affect the param choices (and transitively the security!)

- Should not optimize any security critical operations

o For instance, repetitive computations might seem an avenue for optimization, but will
affect CCA-2 security (security against chosen ciphertext attacks)

> Rule of thumb: Do not optimize the algorithm. Only optimize the implementation

® Example: Build a hardware core that does matrix-vector multiplications (for the same
param set) faster than software

45



Kyber in a nutshell

S
—

|
(pk,sk) = Keygen() | pk

Generate a matrix 4, where A4 € RE*¥ |

Generate s € R and e € R |
t=A-s+e¢

pk = Encode(t)

sk = Encode(s)

S/ N R W . Ay

XOF: SHAKE-128; H: SHA3-256; G: SHA3-512; KDF: SHAKE-256.

46



Kyber in a nutshell

P

(pk,sk) = Keygen()

Generate a matrix 4, where A4 € RE*¥ |
Generate s € R and e € R
t=A-s+e¢
pk = Encode(t)
sk = Encode(s)

——————————

S 740 NI e S A A

(c,K) = Encaps(pk)

(K,r) = G(m | H(pk)),where r € RE
m € B*,m = H(m)

Enc(r,m,pk) : Input — (r,m, pk) , Output — ¢
Generate a matrix A, where A € RE*¥
t = Decode(pk)
e; ERFand e, €R,
u=AT r+e¢
v=t"-r+e, + Decompress,(m,1)
¢, = Encode(Compress,(u))
¢; = Encode (Compress, (v))
c=(cyllcz)

K = KDF(K || H(c))

XOF: SHAKE-128; H: SHA3-256; G: SHA3-512; KDF: SHAKE-256.

47



Kyber in a nutshell

P

§ = Decode(s)
h=v—-38T u
m' = Encode(Compress, (h, 1))
(K',r') = G(m")
¢’ = Enc(pk,m’,1")
if(c ==c¢") > K = KDF(K' || ¢")
else - K = random

1 pk
(pk,sk) = Keygen()
Generate a matrix 4, where A4 € RE*¥ |
Generate s € R and e € R |
t=A-s+e¢ |
pk = Encode(t) |
sk = Encode(s) I
|
|
|
K = Decaps(sk,c) I

u,v = Decode(Decompress,(c)) L C

|
|

H: SHA3-256; G: SHA3-512; KDF: SHAKE-256.

S 740 NI e S A A

(c,K) = Encaps(pk)

(K,r) = G(m | H(pk)),where r € RE
m € B*,m = H(m)

Enc(r,m,pk) : Input — (r,m, pk) , Output — ¢
Generate a matrix A, where A € RE*¥
t = Decode(pk)
e; ERFand e, €R,
u=AT r+e¢
v=tl .r+e + Decompress,(m, 1)
¢, = Encode(Compress,(u))
¢; = Encode (Compress, (v))
c=(cyllcz)

K = KDF(K || H(c))

48



Parameters

n k g m n (du.d,) 9
KYBER512 256 2 3329 37 2. (10,4) “2~159
KYBERT768 256 3 3329 2 2 (10,4) 27164
KYBER1024 256 4 3329 2 2 (11,5) 2°1™

49



Dilithium in a nutshell

S

(pk,sk) = Keygen()

Generate a matrix 4, where A € RE*!
Generate s; € R, and s, € R§
t=A-51+5;
(t1,to) = Power2Round(t)
pk = Encode(t,)
sk = Encode(ty, S1,52)

50



Dilithium in a nutshell

S

(pk,sk) = Keygen()

pk,M, o

Generate a matrix 4, where A € RE*!
Generate s; € R, and s, € R§
t=A-51+5;
(t1,to) = Power2Round(t)
pk = Encode(t,)
sk = Encode(ty, S1,52)

o = Sign(sk, M)

Generate a matrix 4, where 4 € RE*!
Generate y € R,
w=A-y,w; = HighBits,(w)
c=HWwW),z=y+c-s;

h = MakeHint, ()
Return a(c, z, h)

e —— S —— 7 ———

51



Dilithium in a nutshell

S

(pk.sk) = Keygen() poM.o
Generate a matrix 4, where A € RE*!
Generate s; € R, and s, € R§
t=A-51+5;
(t1,to) = Power2Round(t)
pk = Encode(t,)
sk = Encode(ty, S1,52)

Verify(pk,M, o)
= valid /invalid

Generate a matrix 4, where A € RE*!
wy = UseHint, (h)

Verify the correctness of the signature

based on the value of z, c and h

o = Sign(sk, M)

Generate a matrix 4, where 4 € RE*!
Generate y € R,
w=A-y,w; = HighBits,(w)
c=HWwW),z=y+c-s;

h = MakeHint, ()

52
Return a(c, z, h)

e —— S —— 7 ———



Parameters

NIST Security Level 2 3 5
Parameters
¢ [modulus] 8380417 8380417 8380417
d [dropped bits from t] 13 13 13
7 [# of £1’s in (] 39 49 60
challenge entropy [log (256) + 7] 192 225 257
7 |y coefficient range] 2x i g0
¥2 [low-order rounding range] (¢—1)/88 (¢—1)/32 (g—1)/32
(k, €) [dimensions of A] (4,4) (6,5) (8,7)
n [secret key range] 2 4 2
8 [r-7] 78 196 120
w [max. # of 1's in the hint h| 80 59 75
Repetitions (from Eq. (5)) 4.25 5.1 3.85

53



Overall Architecture of our Proposed KGP-PQC-TLS:

We have chosen a lightweight Xilinx board NEXYS 4 DDR which houses an Artix-7
FPGA and a soft-core microprocessor

The Microblaze processor triggers the respective key generation, key

encapsulation/decapsulation, signature generation and verification operations whenever
required

Hardware Secure Module Crypto Co-processor
Instruction
Memory Kyber
¢ and
rs > | Dilithium
@ Datapath
Microblaze Softcore Memory File Elements
processor

54
Overall Architecture of our Proposed Design



Hardware Acceleration : A Case Study of Post Quantum TLS

:‘ — '; L HasHumt i
E f_’l 1 i
Data Memory < ;| Data Mem 1 Kecoak Keccak-f 1600 | |
; | (_r: \Wrapper| (Buffer e Permutation | !
EI : Functions
— 1
1 (O I B
; _ 1 oo : {7 cBD sampler I Common Elements
Instruction Memory < iy i 2 I =
: o R [TTT] [TTT] : for the Unified
: , @ ¥ l Design
gt =1 R ?
i Program I g - H |
Program Counter < || Counter || O ol ; g I
o " 2' | Modulus | I
EI Decompose | . = l
! . 3 HETi gt | p—————— Datapath Elements
I Power2Round| . 1 BRAM 0 ' 1
— by T [Twiddle 2 Butterfly I
I o | LFactor Units 5
I Pack EI : BRAM 1 I .
1 ; : ;= 1 The multiple outputs
: Unpack > R I produced by these modules
Data ath Elements . E.;:":-'-‘-'“".'-’:-'“":-‘:-’-': | | Encode Compress I are fed tO a mUItipIexer Unit
P g LMeketint | T : connected to each individual
1 | UseHint | il | module, the appropriate
E : | : Decode Decompress ! .
E——— ) (N SRS ) it I value is extracted based on
] Samptetnsan | ST — I the value of the select line
4 < P Rejection C 1
I|Rejection Core L | eJEIOHWE I
| S ——— I e = = = = = === == 5 55

Overview of the Hardware Architecture of the Design



Number Theoretic Transforms (NTT)- The Heart of Lattice based
PQC Designs

1+ 2x + 3x%4 4x? 32x? +52x + 61
54+ 6x + 7x%+ 8x3 x* 41 / 32x% 4+ 52x% + 61x* 4+ 60x7 + 34x% 4 16x + 5

b4
8x% + 16x* + 24x° + 32x° 32x% + 0x°+ 0x* 4+ 0x% 4 3247 ~

7v2 4+ 14x3 + 21x* + 28x5 52x% + 61x* + 60x* + 2x* + 16x+5

s 4 3 2
6x + 12x% + 18x3 + 24x* 52x5 + 0x*+ 0x®+ 0x? +52x -

6lx* + 60x* + 2x%2=36x +5
5+ 10x + 15x2 + 20x3
- 6lx* + 0x* + 0x% + 0x+61

5+ 16x +34x% + 60x° + 61x* +52x° +32x° 60x3 + 2x2 — 36x — 56

Polynomial multiplication can be seen as a convolution of two vectors.
An alternate way of expressing the polynomials (rather than coefficients) is to evaluate the function (in

this case 4 points).
Then, we can point to point multiply the results! - O(n) steps
The transformation should be however efficient — O(nlogn) steps!

56



NTT of Kyber

Kyber is based on NTT-friendly prime q = 3329

The prime is of the form g — 1 = 2% - 13 and base field Z,/(X™ + 1), where n = 256 has only 256-th root of
unity but not 512-th root of unity

Let ¢ be the first 256-th primitive root of unity

X256 41 —— (XZ _ ZZbr(O)“)(XZ / (Zbr(1)+1)(X2 _ (2br(2)+1) (X2 _ (2b7’(127)+1) . br — bit reversal
- The NTT of f € R, is given as: (f mod X* — (P01 fmod X2 — {2br(127)+1)

Fo = fog@br@+D0 4 £ @br+D)1 4 £ r@brD+D2 4 .4 £ cC@brD+1) 127

f2i+1 — flq(Zbr(i)+1)-0 +f3((2br(i)+1)-1 _|_fsc(2br(i)+1)'2 + .. +f255((2br(i)+1)'127

NTT(f) = f = (fo + fiX, f2 + 53X ... 254 + fa55X)

57



NTT of Dilithium

Dilithium is based on NTT-friendly prime q = 8380417

The prime is of the form ¢ — 1 = 2'3 - 1023 and base field Z,/(X™ + 1), where n = 256 has both 256-th and
512-th root of unity

Let r be the first 512-th primitive root of unity

X256 4] —— (X —71)X+7r)X —=7r2D)X + 72 (X =12 X + r27) (X — r255) (X + 1?>)

The NTT of a € R, is given as: (amod X —r,amod X +71,...,amod X — r255 amod X + r?>°)

NTT(a) = a = (a(ry), a(="1y), ..., a(r127), a(—1127)), Where r; = tPTv(128+D by, s bit reversal

58



Architecture of Unified NTT

+ In case of Kyber the irreducible polynomial X2°¢ + 1 is split into 128 degree 2 polynomials
X256 +1] — (XZ _ ZZbT(O)-l-l)(XZ _ (2bT(1)+1)(X2 - ZZbT(Z)-'-l) (XZ _ ZZb‘r‘(127)+1)  br > bit reversal
+ In case of Dilithium the irreducible polynomial X?°¢ + 1 is split into 256 degree 1 polynomials

X256 4] —— (X —1)X+7r)X —=7r2NX +7r129) (X —r27)(X + r27) (X — r255) (X + 1r?>%)
« Consequently, in case of Kyber the NTT of a polynomial has 128 degree 1 polynomials
NTT(f) = f = (fo + 11X, f2 + f3X, ., fasa + f255X)
« Consequently, in case of Dilithium the NTT of a polynomial has 256 degree 0 polynomials

NTT(a) = @ = (a(rp), a(=1y), ..., a(r137), a(=r17)), where r; = tb™0(128+D by, s bit reversal

* So, in order to combine them we have stopped splitting the Dilithium polynomial after obtaining 128
degree 2 polynomials. 59



Architecture of Unified NTT

Using the NTT and Inverse NTT, we can compute the product f - g of two elements f, g € R,
The formulation for the calculation is NTT~(NTT(f)ONTT(g)) = fOg§ = h

So, the basecase multiplication consist of 128 products of degree 1 polynomials,

While executing pointwise multiplication we followed the Karatsuba multiplication technique:

hai + hyi1X = (fzt + fztlx) . (QZi + g2i+1X) mod (XZ — CZbT(DH)
hoi = fai Gai + faiz1 Gair - (207D
haiv1 = (f2i + f2i41 ) (921 + G2i+1) — (F2i 921 + f2i+1 G2i+1)

So effectively the complexity of the polynomial multiplication is reduced from 0(n?) to 0(nlogn)

60



NTT Multiplier

We have implemented both the Cooley-Tukey (for forward NTT) and the Gentleman-Sande (for Inverse NTT)
algorithms to implement the NTT multiplier.

d b e Figure shows the basic structure of a butterfly unit which is

T e o 5 capable of processing two coefficients at a time.
Subtract Adder AN The NTT multiplier houses 2 such butterfly computation units
[ Y that is capable of processing four polynomial coefficients after
ﬁx , M"J E each iteration
o okmt] ket D .+ The butterfly unit in the figure can operate in 3 separate modes:
{oRm, DR2: 0 5 Forward NTT, Inverse NTT, Point-wise multiplication
| (0RI6:0] g e 0% 120 wosur |, o '« Depending on the operating mode, the input ¢ can be switched
' | — Nﬂﬁi\ 1 between twiddle factors or a polynomial coefficient.
e e || e |

[ I Forward NTT Inverse NTT

s e t=4C.a a=a+b
i resulty result, ; a=a-—t b=a-—b»
"""""""""""""""""""""""""""""" b=b+t b=2{.b

Butterfly Architecture of our NTT Core

¢ is the twiddle factor i



NTT Multiplier

- The NTT multiplier block has two separate BRAM units capable of holding two coefficients in
a single memory cell separated by an index of s, where s € {128,64,32,16,8,4,2}

- The figure below shows an example of the content of the BRAM units

BRAM 0 BRAM 1 BRAM 0 BRAM 1 BRAM O BRAM 1
A
ap | a1 @128 | @129 ap | a1 agq | Qg5 ap | a az2 | @33
a | as @130 | Q131 as | as age | A67 a | ag Q34 | Q35
54 : ! i : : a . !
Q124 | Q125 a252 [A253 ai188 | Q189 a252 Q253 Q220 | @221 a252 | Q253
v [@126 Q127 | |@254 | 255 @190 (@191 | |A254 | Q255 @222 | @223 | |A254 |A255
48 bits

NTT multiplier scheduling in the NTT RAM

62



KECCAK Module for Kyber and Dilithium

Data_in clk rst

b v

Kyber requires four modes of the Keccak core - namely

Input Buffer  [-------cccccccccnna-- ;
SHA3-256, SHA3-512, SHAKE-128, and SHAKE-256. ;
v :
Padding ‘
o Whereas, Dilithium requires two modes - SHAKE-128 and SHAKE-256. Module ‘
Constants E
‘ . Y '
These modes are implemented using the Keccak sponge SIPO 5
structure internally equipped with separate wrappers and AR s s
individual buffers that are multiplexed based on the micro- Register
i Round Control
coded control signals. ; o R el
Round ] ]
Constants

- 5 N ) 4
in —pt v z z data_ready:
ey Mux Theta H Rho H Pi }—) g —b‘ Chi H lota }—b g ou > /V 1600 :
N ck —» :;j clk —> g S E
<l rst —b— rst —b_ v E
{ Qutput Buffer ](— S
63

Prepesed archiicoture of transfoFmatioound Proposed architecture of the KECCAK hash function



Parallel Scheduling of the Key generation of Kyber and Dilithium

DILITHIUM
SHAKEZS56 SHAKE128
SHAKE128 —‘
|
%
Slmplhg Sampling
] s1'=NTT(s1) ~ H'=A.s1 ~ t=NTT- V1) —- ti4=s2 — cadd - powerZround - Pack_PK — SHAKE256 —- Pack_SK
Timeline
KYBER
SHAKE256 — SHAKE128
can | cep ]I

sk' = NTT(sk)

e =NTT(e) A pk'=A. sk’

\—- Kyber_pack

1

prane |

\—-! Kyber_pack

Client

Public Key extract
Certificate

DILITIUM SIGN VERIFY
KYBER ENCAPS

SHARED SECRET

Server Hello

Server

I Certificate(DILITHIUM PUBLIC KEY) 1

Server Key Exchange

>
<

Client Key Exchange

A

1
1
1
1
1
1
1
wl
1
1
1
1
1
=l
1
1
1

DILITIUM KEYGEN
KYBER KEYGEN
DILITHIUM SIGN

KYBER DECAPS

SHARED SECRET

64



Implementation Details

The table below shows the resource utilization of various components of Kyber and Dilithium when
implemented on the FPGA

Algorithm Components LUTs | DSPs | BRAMs
Decompose 504 - -
MakeHint 80 - -
UseHint 708 - -
Powe2Round 75 - -
Pack 658 - -

Dilithium | Unpack 325 - -
Encode 354 - -
Decode 160 - -
SamplelnBall 485 - -
Verify 16 - -
Rejection Core 718 - -
Compress,/Decompress 2568 - -
Encode 581 - -
Decode 268 - -

Kyber COPY 30 - -

CMOV 35 - -
Rejection Core 185 - -
Verification Core 98 - -
KECCAK 10879 - -

Common Data Memory - - 19
NTT Multiplier 2899 4 1
Controller 2618 - 5 65

Total 22125 4 25




Implementation Details

The table below shows the comparison of our proposed design with the state of the art Dilithium and
Kyber hardware designs

Sign Verify Encaps Decaps
Works Algorithm LUTs AT Product
Uus us us us
D"'th'“rg:'; Kyber- 37935 178 121 10 20 12.4
[8]+[9] D"““'”’“?gg' Kyber- | 47683 310 221 15 25 24.3
P Al NAS 58000 503 377 20 30 53.9
1024
D"'th'”"; 1"2+ Kyber- ' 52125 200 113 21.27 26.32 7.9
. Dilithium Ill+
Our Design S 22125 350 181 27.11 31.85 13.0
D"'th'”';‘o‘z’: Kyber- | 52125 500 270 33.11 39.89 18.6

Resource utilization and timing details of our proposed design

Ref.8 : Georg Land et al. “A hard crystal - implementing dilithium on reconfigurable hardware.” IACR eprint, 2021.

Ref.9: Mojtaba Bisheh-Niasar et al. “High-speed NTT-based polynomial multiplication accelerator for crystals-kyber post-quantum cryptography.” IACR eprint, 2021. 66




Step 5: Side-channels

67



Side-channels : Importance for PQC standardization

- The hard problems do not factor in physical attacks. But such attack vectors can still leak secret

cryptographic material in presence of side channels.

68



Side-channels : Importance for PQC standardization

The hard problems do not factor in physical attacks. But such attack vectors can still leak secret
cryptographic material in presence of side channels.

NIST also considers evaluation of PQ cryptosystems against such attack vectors.
o Quote NIST: "NIST seeks any distinguishing information in the realm of side-channel analyses that especially
indicate a reason for NIST to prefer one of the finalists over the others."

69



Side-channels : Importance for PQC standardization

The hard problems do not factor in physical attacks.
But such attack vectors can still leak secret cryptographic material in presence of side

channels.

NIST also considers evaluation of PQ cryptosystems against such attack vectors.
o Quote NIST: "NIST seeks any distinguishing information in the realm of side-channel analyses that
especially indicate a reason for NIST to prefer one of the finalists over the others."

Two kinds of adversaries:
- Passive adversary : Passively observes leakage and tries to reconstruct secret
cryptographic material. Example: power side-channel

- Active adversary : Actively injects faults in computation, and uses differential
computation paths to reconstruct secret cryptographic material.

70



Side-channels : Case study for PQ Lattice KEMs

Presenting a case-study on PQ Lattice KEMs. Similar issues plague other cryptosystems too.

Rely on distinguishable effective/ineffective faults to draw inferences

Algorithm 3 LPR.KEM.Decaps.

Fault here!

Effective fault

X SN Y oR W ohe
\ ~

Input: (sk;¢)---____

:’\n] = LPR.PKE.Dec(sk, c)

(Kpp F) =Gk, m)
¢+ = LPR.PKE.Enc(pk, m, r")

return (c, K)

71



Side-channels : Case study for PQ Lattice KEMs

Presenting a case-study on PQ Lattice KEMs. Similar issues plague other cryptosystems too.

Rely on distinguishable effective/ineffective faults to draw inferences

Effective fault

Linearity of
decryption noise -7 Fault

Sign of decryption noise leaked

m - [%J +er+ex—e1s
Ineffective fault

72



Side-channels : Case study for PQ Lattice KEMs

> Attack on Kyber

0 ,
AR A E IR /D
1 / 1\ 1 ) / L\ \ ) )
0 aqg/4 9q/2 3q/4 q 0 g/2 q 3q/2 2q 0 q/2 3q/2 q 5q/2
Ciphertext space

Plaintext space

LSB(X/Q)

Ne]

Decoding in Kyber

Ineffective faul\
>0

NIANY ES A h |3§ <
x2 +¥/» @
v\\ ) =
’ q/4 q/2 3q/4 ! q 3q/2 4 WZ/ Effective f. I/
egive fau Sign of decryption

Decoding in Kyber after instruction skip fault noise inferred

System of in-equations
then solved by belief
propagation

73



Side-channels : Case study for PQ Lattice KEMs

Countermeasures

Algorithm 3 LPR.KEM.Decaps.

: Input: (sk, c)

Algorithm 3 LPR.KEM. Decaps. : fori=1to k do // k repetitions

11: K=KDF (z, H(c)) // Use randomness z to output an incorrect key

1
2

1: Input: (sk, c) 3 m; = LPR.PKE.Dec(sk, c)
2: m=LPR.PKE.Dec(sk, ¢, seed) 4: if Check(my, my, ..., mz) = 0 then
3: (K:H, r') = G(pkh, m) 5 ab::)rt // If a fault is detected
4: ¢, = LPR.PKE.Enc(pk, m, r') 6: (Kgg» r )= G(pkh, my)
5: if ¢, = ¢ then 7: ¢. = LPR.PKE.Enc(pk, my, r)
6 K=KDF Ky, Hc) 8 if c, =cthen
7: else 9: K=KDF Ky, H(c))
8: K=KDF (z, H(c)) // Use randomness z to output an incorrect key 10: else
9:

return (c, K)

12: return (c, K)

Shuffle the order of coefficients Repeat the computation multiple times
being processed (k repetitions protect against k-1 faults

74



Future

75



The future is Post-Quantum

- Expect worldwide organizations to adapt NIST standardized cryptosystems

76



The future is Post-Quantum

Expect worldwide organizations to adapt NIST standardized cryptosystems

"Aren't classical cryptosystems secure until Quantum Computers become practical?"
- No!
- "Harvest-Now-Decrypt-Later" attacks: stores several ciphertexts to be decrypted 10-15
years into the future. A real threat to national security!
- Establishes the need to transition to post-quantum cryptosystems ASAP

77



The future is Post-Quantum

Expect worldwide organizations to adapt NIST standardized cryptosystems

"Aren't classical cryptosystems secure until Quantum Computers become practical?"
- No!
- "Harvest-Now-Decrypt-Later" attacks: stores several ciphertexts to be decrypted 10-15
years into the future. A real threat to national security!
- Establishes the need to transition to post-quantum cryptosystems ASAP

"What are the ideal transition steps?"
o Let the NIST standardization process end (the fourth round ends about 2025)

78



The future is Post-Quantum

Expect worldwide organizations to adapt NIST standardized cryptosystems

"Aren't classical cryptosystems secure until Quantum Computers become practical?"
- No!
- "Harvest-Now-Decrypt-Later" attacks: stores several ciphertexts to be decrypted 10-15
years into the future. A real threat to national security!
- Establishes the need to transition to post-quantum cryptosystems ASAP

"What are the ideal transition steps?"

o Let the NIST standardization process end (the fourth round ends about 2025)
o All cryptosystems are open-source by design, and such implementations are well-audited.

79



The future is Post-Quantum

Expect worldwide organizations to adapt NIST standardized cryptosystems

"Aren't classical cryptosystems secure until Quantum Computers become practical?"
- No!
- "Harvest-Now-Decrypt-Later" attacks: stores several ciphertexts to be decrypted 10-15
years into the future. A real threat to national security!
- Establishes the need to transition to post-quantum cryptosystems ASAP

"What are the ideal transition steps?"
o Let the NIST standardization process end (the fourth round ends about 2025)
o All cryptosystems are open-source by design, and such implementations are well-audited.
o At the least, use out-of-box PQ implementation with recommended parameter settings.

80



The future is Post-Quantum

Expect worldwide organizations to adapt NIST standardized cryptosystems

"Aren't classical cryptosystems secure until Quantum Computers become practical?"
- No!
- "Harvest-Now-Decrypt-Later" attacks: stores several ciphertexts to be decrypted 10-15
years into the future. A real threat to national security!
- Establishes the need to transition to post-quantum cryptosystems ASAP

"What are the ideal transition steps?"

o Let the NIST standardization process end (the fourth round ends about 2025)
All cryptosystems are open-source by design, and such implementations are well-audited.
o At the least, use standard PQ implementation with recommended parameter settings.
Any edits to standar PQ implementation requires reproving security in the relevant hard-
problem assumption through standard cryptographic reduction techniques.

O

O



Thank You



Binomial Sampler

* Abinomial sampler is used as substitution for the Gaussian sampler

« The binomial distribution that is parametrized by k = o2 is sufficiently close to a discrete Gaussian
distribution with standard deviation o and does not significantly decrease the security level.

« Algorithm:
» Uniformly sampling two k-bit vectors and computing their respective Hamming weights.
* Subtracting the Hamming weights of both bit vectors.

» As k scales quadratically with ¢ this approach is suited for lattice-based encryption or key exchange
schemes. Signature schemes usually require larger standard deviations.

* This is implemented in NewHope and Kyber

83

[Ref] Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Proceedings of the 25th USENIX Security Symposium




PQ resistant hard problems : Code-based
. Code-based:

Problem ((Decisional) Syndrome Decoding problem) Given an (n — k) x n parity-
check matrix H for C, a vectory € ]Fg_k, and a targett € N, determine whether there exists
x € F% that satisfies Hx' =y and |x| <t.

Problem description: given a parity matrix H and a binary target y, find x

84



PQ resistant hard problems : Code-based
Code-based:

Problem ((Decisional) Syndrome Decoding problem) Given an (n — k) x n parity-
check matrix H for C, a vectory € Fg_k, and a targett € N, determine whether there exists
x € F% that satisfies Hx' =y and |x| <t.

Problem description: given a parity matrix H and a binary target y, find "small" preimage x
- Why is it hard: Because the x to be recovered is bounded by Hamming weight t. Small t

means we need to find a small x, and that is provably difficult for "correct
parameterization" of the problem (i.e. for large enough values of n and k).

85



PQ resistant hard problems : Code-based
. Code-based:

Problem ((Decisional) Codeword Finding problem) Given an (n — k) X n parity-
check matrix H for C and a target w € N, determine whether there exists x € IF; that satisfies
Hx" =0and |x| =w.

- Problem description: given a parity matrix H and an integer target w (w > 0), find "small" x
in the kernel of H

86



PQ resistant hard problems : Code-based
. Code-based:

Problem ((Decisional) Codeword Finding problem) Given an (n — k) X n parity-
check matrix H for C and a target w € N, determine whether there exists x € IF; that satisfies
Hx" =0 and |x| = w.

- Problem description: given a parity matrix H and an integer target w (w > 0), find "small" x
in the kernel of H

- Why is it hard: Because the x to be recovered is bounded by Hamming weight w. Small w
means we need to find a small x, and that is provably difficult for "correct
parameterization" of the problem (i.e. for large enough values of n and k).

87



PQ resistant hard problems : Multivariate-based

Multivariate-based:

Problem  ((Decisional) Multivariate Quadratic (M Q) polynomial problem) Given a
finite field ¥ and a system of m quadratic polynomials of n variables x;:

ftstem) = L dfxy T om0,
1<i<j<n 1<i<n

for k from 1 to m, where ag.{) ; bl(k) .c®) are all in F, determine if there exists a solution in [F".

Problem description: Given m quadratic polynomials with n variables each, find a solution
"common" to the kernel of each polynomial

88



PQ resistant hard problems : Multivariate-based

Multivariate-based:

Problem ((Decisional) Multivariate Quadratic (M Q) polynomial problem) Given a
finite field ¥ and a system of m quadratic polynomials of n variables x;:

fk(‘x17"':xn) = Z ag-()x,-xj—k Z bl(k)xi_'_c(k) :O,
1<i<j<n 1<i<n

for k from 1 to m, where ag.‘) ; bl(k) .c®) are all in F, determine if there exists a solution in [F".

Problem description: Given m quadratic polynomials with n variables each, find a solution
"common" to the kernel of each polynomial

Why is it hard: Finding an element in the kernel of a multivariate polynomial amounts to
finding its root. The "hardness" here comes from the requirement of finding a "common"

root to all polynomials (or one solution to all polynomials).

89



PQ resistant hard problems : Multivariate-based

Multivariate-based:

Problem  ((Decisional) MinRank problem) Given a finite field F, k matrices M; of
size m X n with entries in I, and a rank bound r, determine if there exist values c; € IF to
satisfy the following equation:

k
rank (2 c,-M,-) g
i=1

Problem description: Given k matrices in some field, find a linear combination of these
matrices such that the rank of the resultant matrix is bounded by r

90



PQ resistant hard problems : Multivariate-based

Multivariate-based:

Problem  ((Decisional) MinRank problem) Given a finite field F, k matrices M; of
size m X n with entries in I, and a rank bound r, determine if there exist values c; € IF to

satisfy the following equation:

k
rank (z c,-M,-) <T.
i=1

Problem description: Given k matrices in some field, find a linear combination of these
matrices such that the rank of the resultant matrix is bounded by r

Why is it hard: Finding a linear combination of matrices M is straightforward, however,
the "hardness" comes from the requirement to bound the final result by small r

91



PQ resistant hard problems : Lattice-based

Lattice-based:

Problem  (The Short Integer Solution (SIS, ,, , g) problem) Letn,m,q be positive in-
tegers, and let B be a positive real number. Given a matrix A € Z'*™, chosen uniformly
at random, find a nonzero integer vector z € Z" of Euclidean norm ||z|| < B such that

AZZOEZZ.

Problem description: Given a matrix A, find a "short" z in the kernel of A

92



PQ resistant hard problems : Lattice-based

Lattice-based:

Problem  (The Short Integer Solution (SIS, ,, , g) problem) Letn,m,q be positive in-
tegers, and let B be a positive real number. Given a matrix A € ng’", chosen uniformly
at random, find a nonzero integer vector z € Z™ of Euclidean norm ||z|| < B such that
Az=0¢€7Zj

Problem description: Given a matrix A, find a "short" z in the kernel of A
- Why is it hard: Finding an point in the kernel of lattice defined by A is straigtforward

through methods like Gaussian Elimination. The "hardness" comes from the requirement
of bounding the norm of z (i.e. find a "short" element in the kernel of A).

93



PQ resistant hard problems : Lattice-based

Lattice-based:

Problem  (The Search— NTRUR ,p y problem) Let g be a positive integer, 'y be a pos-
itive real number, and R be a ring of the form R = Z, x|/ ® (where ® is a monic polynomial).
Given an element h € R drawn from some distribution D, such that there exists nonzero
(f,&) € R? that satisfy h- f = g mod q and have small Euclidean norms ||f||,||g|| < v/q/7.
find such a pair (f,g).

Problem description: Given an element h from the polynomial ring R, find two "short"
polynomials f and g such that h. f = g mod g with overwhelming probability.

94



PQ resistant hard problems : Lattice-based

Lattice-based:

Problem  (The Search— NTRUR ,p y problem) Let g be a positive integer, 'y be a pos-
itive real number, and R be a ring of the form R = Z, x|/ ® (where ® is a monic polynomial).
Given an element h € R drawn from some distribution D, such that there exists nonzero
(f,&) € R? that satisfy h- f = g mod q and have small Euclidean norms ||f||,||g|| < v/q/7.
find such a pair (f,g).

Problem description: Given an element h from the polynomial ring R, find two "short"
polynomials f and g such that h. f = g mod g with overwhelming probability.

- Why is it hard: The "hardness" is derived from two requirements:

- Both fand g are norm-bounded
- BothfandgareinR.
- Why the second requirement: Otherwise, the adversary samples a "small" fin R, then
simply computes ( h . f) mod q. If this result need not be in R, then it is easy to solve



PQ resistant hard problems : Lattice-based

. Lattice-based:

Problem  (The Search-LWE, ,, ; 3, problem) Lets € Z; be chosen from some distri-
bution B. Given m samples (a1,b1),. .., (am,bm) € Zy x Zy drawn independently at random
Jfrom the distribution As 4, find s.

- Problem description: Given a public matrix A and a secret s, invert the functional evaluation of

(A.s + e) where e is some error drawn from a "narrow" distribution (like Gaussian).

96



PQ resistant hard problems : Lattice-based

. Lattice-based:

Problem  (The Search-LWE, ,, ; 3, problem) Lets € Z; be chosen from some distri-
bution B. Given m samples (a1,b1),. .., (am,bm) € Zy x Zy drawn independently at random
Jfrom the distribution As 4, find s.

- Problem description: Given a public matrix A and a secret s, invert the functional evaluation of
(A.s + e) where e is some error drawn from a "narrow" distribution (like Gaussian).

- Why is it hard: Given b = (A.s + e) , it is difficult to invert for the correct choice of the
distribution of error e

97



NTT Multiplier

Algorithm for NTT

Require: p, N, q; twiddle_ factor_array|N]
Ensure: p

1: lwiddle_counl = 1

2: for s =2V to 1 by 5/2 do

3: for start=0to N —1 by j4s do

1 zeta = twiddle_factor_array(+ + twiddle_count]
5 for j — start to start + s do

6: L = zela-p|j + s| modg

: - pli +s| = plj] — tmodq

8 plil = pli] + t modq

9 end for

10: end for

11: end for

Algorithm for Inverse-NTT

Require: p, N, q; twiddle. factor array|N]
Ensure: p
1: twiddle_count = N
2: fors=1tN—-1bys-2do
3: for start =0to N —1 by j+s do
zeta = twiddle. factor array|— — twiddle_count|
for j = start to start + s de
t = plj]
plil = (L +plj + s]) /2 modq
pli+sl=( -plj +s])/2modq
pli + s] = zeta - p[j + s| modq
10: end for
11: end for
12: end for

&

L

98



Compress/Decompress unit of Kyber

The compress operation requires division by g and rounding.
d

o Compress(x) = [(%) - x | (mod 2%)

The decompress unit performs division by power-of-two and rounding operation

o Decompress(x) = [(;id) - x|

The value of d varies as follows: {1, 4,5, 10,11}

99



Compress/Decompress unit of Kyber

 The compress operation requires division by g and rounding.

o Compress(x) = [(Zq—d> - x | (mod 29)

 The decompress unit performs division by power-of-two and rounding operation

o Decompress(x) = [(;id) g

 The value of d varies as follows: {1,4,5,10,11}

Compress Algorithm used for Kyber

ifd==1:t= (10079 -x);y = (t > 24) + (t[23] > 23)

ifd==4:t=(315-x);y = (t > 16) + (t[15] > 15)

ifd==5:t=(630-x);y = (t>» 16) + (t[15] » 15)

if d==10:t = (5160669 - x); y = (t » 24) + (t[23] » 23)

ifd==11:t = (10321339 - x); y = (t > 24) + (t[23] > 23)

return y (mod 2%) 100



