PKI
Past Present & Future

Ashutosh Saxena
Outline

• Motivation
• PKC and PKI
• PKI examples
• PKI criticisms & obstacles
• PKI evolution
• The road ahead...
Motivation

- We have crossed 15 yrs of formal PKI service in INDIA. (Remember IT Act 2000)
- Has our understanding and usage of this technology grown in any way?
- With evolution of both theory & technology, where we are heading towards!!
PKC and PKI

- Public key cryptography
 - Each entity in a collection has a pair of keys
 - Alice has $pub_A, priv_A$
 - Enc, d-sig. possible (mathematical operations)
 - RSA, ECC, Bilinear Pairing, Lattice based, etc...

- Public Key Infrastructure (PKI)
 - Makes PK cryptography available to applications and environments that wish to use it
 - Enc, d-sig. possible (security operations)
 - Key pair bound to an entity identifier in a way that makes it useful to a variety of apps
PKI (cont’d)

• “Identifier”
 - Uniquely, without ambiguity, specifies entity within some context or environment, but may not necessarily reveal actual identity
 - Context/environment need not be global in scope (depends on apps that will use keys)
PKI (cont’d)

- **Binding** of key pair and identifier
 - Validity of bindings
 - Authority (making & breaking)
 - Issuance process (syntax & dissemination)
 - Termination process (alerting)
 - Use of bindings
 - Key management process ("One/All purpose")
 - Binding validation process (trusting someone else’s key)
Outline

• Motivation
• PKC and PKI
• PKI examples
• PKI criticisms & obstacles
• PKI evolution
• The road ahead...
PKI Examples

- Over the past years, there have been several approaches to model and implement PKI

- Like X.509, PGP, SPKI, etc.
Sample Comparisons

<table>
<thead>
<tr>
<th>PKI Solution</th>
<th>Authority</th>
<th>Issuance Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509</td>
<td>CA, AA. CA is owner / definer of namespace.</td>
<td>ASN.1 syntax. X.500 or LDAP directories.</td>
</tr>
<tr>
<td>PGP</td>
<td>No external authority. User is owner / definer of namespace.</td>
<td>Issued by key owner (e.g., Web page, e-mail sig., key server).</td>
</tr>
<tr>
<td>SPKI</td>
<td>Authorization granter. Relying party is owner / definer of namespace.</td>
<td>Issue authorizations based on pseudo IDs.</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- PKC and PKI
- PKI examples
- PKI criticisms & obstacles
- PKI evolution
- The road ahead...
PKI Criticisms & Obstacles

- Many criticisms have been leveled at this technology
- Probably the best-known collection is the “10 Risks” paper by Ellison & Schneier
- But criticisms cannot always be taken at face value: need to consider whether the “flaw” being criticized is actually related to PKI or not
Obstacles: Ranked by Importance

The first four obstacles have more than half of the total points.
Applications: Ranked by Need for Improvements in PKI Support

- Document Signing
- Secure Email
- Electronic Commerce
- Single Sign On
- Secure Wireless LAN
- Web Services Security
- Web Server Security
- Virtual Private Network
- Code Signing
- Secure RPC
Costs Ranked

- Costs of Initial System Design
- Cost of Software Acquisition
- Cost of Software Integration
- Cost on Ongoing Operations
- Cost of Secure Facilities
- Cost of Smart Cards and Readers
- Cost of End-User Support
- Cost of Initial Certificate Issuance
- Non-Technical Setup Costs (e.g. legal & CPS)
- Other Costs
- Cost of Training
- Cost of Cross-Certification
- Cost of Support Contracts
Parties: Ranked by Greatest Need for PKI Understanding
Where the Most Serious Interoperability Problems Arise
Outline

- Motivation
- PKC and PKI
- PKI examples
- PKI criticisms & obstacles
- PKI evolution
- The road ahead...
Evolution

• In the year 1993 version of the ISO/IEC CCITT/ITU-T IS X.509 began to be disseminated, recognized, and implemented in small-scale environments

• Late 1993 / early 1994 was effectively the birth of PKI (although the acronym was yet to be coined)
 - Infrastructural considerations were paramount (how to make PK technology available to a wide variety of applications)
Evolution (cont’d)

• Initial definition (1994)
 - Authority: always and only a CA
 - Issuance: X.509 syntax; DN; X.500 Directory
 - Termination: CRL; X.500 Directory
 - Anchor: root of CA hierarchy
 - Private key: CA gen.; local storage
 - Validation: large, special-purpose s/w toolkit
Evolution (cont’d)

• After more than a decade of extensive discussion, research, and implementation by numerous interested parties world-wide:
 - Each of the 6 components has broadened quite considerably with deeper understanding
 - BUT, the same 6 components comprise the core of the definition (i.e., the essential characteristics of the definition remain unchanged)
Evolution (cont’d)

• Current definition
 - Authority: multiple choices (incl. RAs)
 - Issuance: multiple choices (syntax)
 - Termination: multiple choices (incl. online)
 - Anchor: multiple choices (augment & diminish)
 - Private key: multiple choices (gen., reg., storage)
 - Validation: mult. choices (thin client; native apps)
Outline

• Motivation
• PKC and PKI
• PKI examples
• PKI criticisms & obstacles
• PKI evolution
• The road ahead...
Future of PKI

• Moving from theory to practice
 - Over ten years, innovative thinking, fruitful technical discussion, constructive criticism, and implementation efforts have driven the recognition of the need for options
 - Research into secure architectures and secure protocols have made options possible
 - BUT options have yet to be embraced in a significant way in real products
A priority area to be addressed is better certificate processing in complex cases.

Multiple sources of revocation status (CRL, OCSP, indirect CRL, ...) require careful definition of procedures when building the certificate path up to a trusted root and verifying the status of all certificates in chain.

An exact API needs to be defined and implemented as a library to support Applications.

This would make PKIs more suited to real-world needs.
Conclusion

• The goal of this discussion is to convey that the PKI community has significantly broadened its understanding of this technology.

• The challenge now is to translate that understanding to real PKI deployments that solve authentication challenges in real, heterogeneous environments.